TF基础4

模型的存储与加载

TF的API提供了两种方式来存储和加载模型:
1.生成检查点文件,扩展名.ckpt,通过在tf.train.Saver()对象上调用Saver.save()生成。包含权重和其他在程序中定义的变量,不包含图结构。
2.生成图协议文件,扩展名.pb,用tf.train.write_graph()保存,只包含图形结构,不包含权重,然后使用tf.import_graph_def()来加载图形。

模型的存储与加载

https://github.com/nlintz/TensorFlow-Tutorials/blob/master/10_save_restore_net.py)

加载数据及定义模型

#加载数据
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels

X = tf.placeholder("float", [None, 784])
Y = tf.placeholder("float", [None, 10])

#初始化权重参数
w_h = init_weights([784, 625])
w_h2 = init_weights([625, 625])
w_o = init_weights([625, 10])

#定义权重函数
def init_weights(shape):
    return tf.Variable(tf.random_normal(shape, stddev=0.01))

#定义模型
def model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden): # this network is the same as the previous one except with an extra hidden layer + dropout
#第一个全连接层
    X = tf.nn.dropout(X, p_keep_input)
    h = tf.nn.relu(tf.matmul(X, w_h))

    h = tf.nn.dropout(h, p_keep_hidden)
#第一个全连接层
    h2 = tf.nn.relu(tf.matmul(h, w_h2))

    h2 = tf.nn.dropout(h2, p_keep_hidden)

    return tf.matmul(h2, w_o)#输出预测值

生成网络模型,得到预测值,代码如下:

p_keep_input = tf.placeholder("float")
p_keep_hidden = tf.placeholder("float")
py_x = model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden)

定义损失函数:

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(py_x, 1)

训练模型及存储模型

首先定义一个存储路径:

ckpt_dir = "./ckpt_dir"
if not os.path.exists(ckpt_dir):
    os.makedirs(ckpt_dir)

定义一个计数器,为训练轮数计数:

global_step = tf.Variable(0, name='global_step', trainable=False)

当定义完所有变量后,调用tf.train.Saver()来保存和提取变量:

# Call this after declaring all tf.Variables.
saver = tf.train.Saver()

# This variable won't be stored, since it is declared after tf.train.Saver()
non_storable_variable = tf.Variable(777)

训练模型并存储

with tf.Session() as sess:
    # you need to initialize all variables
    tf.global_variables_initializer().run()

    start = global_step.eval() # get last global_step
    print("Start from:", start)

    for i in range(start, 100):
        for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)):
            sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
                                          p_keep_input: 0.8, p_keep_hidden: 0.5})

        global_step.assign(i).eval() # set and update(eval) global_step with index, i
        saver.save(sess, ckpt_dir + "/model.ckpt", global_step=global_step)

加载模型

如果有训练好的模型变量文件,可以用saver.restore()来进行模型加载:

# Launch the graph in a session
with tf.Session() as sess:
    # you need to initialize all variables
    tf.global_variables_initializer().run()

    ckpt = tf.train.get_checkpoint_state(ckpt_dir)
    if ckpt and ckpt.model_checkpoint_path:
        print(ckpt.model_checkpoint_path)
        saver.restore(sess, ckpt.model_checkpoint_path) # restore all variables

图的存储与加载

当仅保存图模型时,才将图写入二进制文件中:

v=tf.Variable(0,name='my_variable')
sess=tf.Session()
tf.train.write_graph(sess.gaph_def,'/tmp/tfmodel','train.pbtxt')

当读取时,又从协议文件中读取出来:

with tf.Session() as_sess:
   with gfile.FastGFile("/tem/tfmodel/train.pbtxt",'rb') as f:
graph_def=tf.GraphDef()
graph_def.ParseFromString(f.read())
_sess.grap.as_default()
tf.import_graph_def(graph_def,name='tfgraph')

队列和线程

队列

在TF中有两种队列,即FIFOQueue和RandomShuffleQueue.

FIFOQueue:创建一个先入先出队列
RandomShuffleQueue:创建一个随机队列

队列管理器

QueueRunner

线程和协调器

使用协调器(Coordinator)来管理线程。

加载数据

TF给出了3种方法:
1.预加载数据:在TensorFlow图中定义常量或变量来保存所有数据
2.填充数据feeding:Python产生数据,再把数据填充后端
3.从文件中读取数据:让队列管理器从文件中读取数据

预加载数据

缺点:当训练数据较大时,很消耗内存。

x1=tf.constant([2,3,4])
x2=tf.constant([2,1,4])
y=tf.add(x1,x2)

填充数据

使用sess.run()中的feed_dict参数,将Python产生的数据填充给后端。

#设计图
a1=tf.placeholder(tf.int16)
a2=tf.placeholder(tf.int16)
b=tf.add(x1,x2)

#用Python产生数据
li1=[2,3,4]
li2=[2,1,4]

#打开一个会话,将数据填充给后端
with tf.Session() as sess:
print(sess.run(b,feed_dict={a1:li1,a2:li2})

https://www.tensorflow.org/guide/datasets#preloaded_data)
填充的方式也有数据量大、消耗内存等缺点。这时最好用第三种,从文件读取。

填充数据

从文件中读取数据分为两个步骤:
1.把样本数据写入TFRecords二进制文件
2.再从队列中读取

posted @ 2019-03-05 22:11  谁动了我的奶盖  阅读(272)  评论(0编辑  收藏  举报