浅谈压缩感知(二十七):压缩感知重构算法之稀疏度自适应匹配追踪(SAMP)

主要内容:

  1. SAMP的算法流程
  2. SAMP的MATLAB实现
  3. 一维信号的实验与结果
  4. 稀疏度K与重构成功概率关系的实验与结果

一、SAMP的算法流程

前面所述大部分OMP及其前改算法都需要已知信号的稀疏度K,而在实际中这个一般是不知道的,基于此背景,稀疏度自适应匹配追踪(Sparsity Adaptive MP)被提出。SAMP不需要知道稀疏度K,在迭代循环中,根据新残差与旧残差的比较来确定选择原子的个数。

SAMP的算法流程:

二、SAMP的MATLAB实现(CS_SAMP.m)

 

三、一维信号的实验与结果

 

四、稀疏数K与重构成功概率关系的实验与结果

六、参考文章

http://blog.csdn.net/jbb0523/article/details/45675735

posted @   AndyJee  阅读(8514)  评论(1编辑  收藏  举报
编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 字符编码:从基础到乱码解决
点击右上角即可分享
微信分享提示