浅谈压缩感知(二十七):压缩感知重构算法之稀疏度自适应匹配追踪(SAMP)
主要内容:
- SAMP的算法流程
- SAMP的MATLAB实现
- 一维信号的实验与结果
- 稀疏度K与重构成功概率关系的实验与结果
一、SAMP的算法流程
前面所述大部分OMP及其前改算法都需要已知信号的稀疏度K,而在实际中这个一般是不知道的,基于此背景,稀疏度自适应匹配追踪(Sparsity Adaptive MP)被提出。SAMP不需要知道稀疏度K,在迭代循环中,根据新残差与旧残差的比较来确定选择原子的个数。
SAMP的算法流程:
二、SAMP的MATLAB实现(CS_SAMP.m)
三、一维信号的实验与结果
四、稀疏数K与重构成功概率关系的实验与结果
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 字符编码:从基础到乱码解决