2016蓝桥杯"取球博弈"问题
较难,网上有能得出正确结果的代码,但是读了一下,像是拼凑出的结果,逻辑不通,代码和注释不符
参考网上代码写了一版,结构相对清晰,注释比较详细
题目很长:
两个人玩取球的游戏。
一共有N个球,每人轮流取球,每次可取集合{n1,n2,n3}中的任何一个数目。
如果无法继续取球,则游戏结束。
此时,持有奇数个球的一方获胜。
如果两人都是奇数,则为平局。
假设双方都采用最聪明的取法,第一个取球的人一定能赢吗?试编程解决这个问题。
输入格式:
第一行3个正整数n1 n2 n3,空格分开,表示每次可取的数目 (0<n1,n2,n3<100)
第二行5个正整数x1 x2 ... x5,空格分开,表示5局的初始球数(0<xi<1000)
输出格式:
一行5个字符,空格分开。分别表示每局先取球的人能否获胜。
能获胜则输出+,
次之,如有办法逼平对手,输出0,
无论如何都会输,则输出-
例如,输入:
1 2 3
1 2 3 4 5
程序应该输出:
+ 0 + 0 -
再例如,输入:
1 4 5
10 11 12 13 15
程序应该输出:
0 - 0 + +
再例如,输入:
2 3 5
7 8 9 10 11
程序应该输出:
+ 0 0 0 0
package ah; import java.util.Arrays; import java.util.Scanner; // 输入3个数,表示可取球的数目{n1,n2,n3} // 输入5局总球数{x1 x2 ... x5} // 持有奇数个球的一方获胜 // 输出:先取球者的结果(+:能赢 0:能平 -:必输) // ------------------------ // 输入: // 1 2 3 // 1 2 3 4 5 // 输出: // + 0 + 0 - // ------------------------ // 输入: // 1 4 5 // 10 11 12 13 15 // 输出: // 0 - 0 + + // ------------------------ // 输入: // 2 3 5 // 7 8 9 10 11 // 输出: // + 0 0 0 0 public class 取球博弈 { // 持有奇数个球的一方获胜 static boolean isOdd(int num) { return num % 2 == 1 ? true : false; } // (+:能赢 0:能平 -:必输) static void showRersult(int _1的球, int _2的球) { String RET_WIN_ = "+ "; String RET_LOSE = "- "; String RET_TIE_ = "0 "; if (isOdd(_1的球) && !isOdd(_2的球)) { System.out.print(RET_WIN_); } else if (!isOdd(_1的球) && isOdd(_2的球)) { System.out.print(RET_LOSE); } else if (isOdd(_1的球) && isOdd(_2的球)) { System.out.print(RET_TIE_); } else { System.out.print(RET_TIE_); } } // 不够取:false // 够取:true static boolean isNotEnough(int _剩下的球, int _要取得球) { if (_剩下的球 < _要取得球) { return true; } else { return false; } } static void getInput() { Scanner sc = new Scanner(System.in); for (int i = 0; i < 3; i++) { _arr_n[i] = sc.nextInt(); } for (int i = 0; i < 5; i++) { _arr_x[i] = sc.nextInt(); } sc.close(); } // java中方法参数传递方式是按值传递 // 基本类型:传递的是基本类型的字面量值的拷贝 // 引用类型:传递的是该参量所引用的对象在堆中地址值的拷贝 // 所以参数[_取到的球数]在方法内的修改,方法外是得不到的,必须使用返回值 public static int getBall(int i_N, int _取到的球数) { boolean _getted = false; for (int j = _arr_n.length - 1; j >= 0; j--) { // 取球,往多了取,如可取{1,2,3},先取3 boolean b奇奇得偶 = (isOdd(_取到的球数) && isOdd(_arr_n[j])); boolean b偶偶得偶 = (!isOdd(_取到的球数) && !isOdd(_arr_n[j])); if (b奇奇得偶 || b偶偶得偶) { // 已经有奇数,还取奇数?不行(取了不就偶数了么?) // 已经有偶数,还取偶数?不行(取了不就偶数了么?) continue; } if (isNotEnough(_arr_x[i_N], _arr_n[j])) { // 剩余的球<可取的最小数:结束 continue; } _取到的球数 += _arr_n[j]; _arr_x[i_N] -= _arr_n[j]; _getted = true; break; } if (!_getted) { // 如果上述方法没有取到, 取出一个最大的数 for (int j = _arr_n.length - 1; j >= 0; j--) { if (isNotEnough(_arr_x[i_N], _arr_n[j])) { continue; } _取到的球数 += _arr_n[j]; _arr_x[i_N] -= _arr_n[j]; } } return _取到的球数; } // 取球博弈(ball game playing) static void ballGamePlaying() { // 输入{取法}和{初始球数} // {可取}按升序排列 Arrays.sort(_arr_n); // 计算每一局 for (int i_N = 0; i_N < _arr_x.length; i_N++) { int _1的球 = 0, _2的球 = 0; while (true) { if (isNotEnough(_arr_x[i_N], _arr_n[0])) { // 剩余的球<可取的最小数:结束 break; } _1的球 = getBall(i_N, _1的球); _2的球 = getBall(i_N, _2的球); } // 一局结束,输出结果 showRersult(_1的球, _2的球); } } // 能取球数:可取球的数目{n1,n2,n3} static int[] _arr_n = new int[3]; // 每一局的初始球数:输入5局总球数{x1 x2 ... x5} static int[] _arr_x = new int[5]; public static void main(String[] args) { testCase123(); ballGamePlaying(); System.out.println(); System.out.println("+ 0 + 0 -:标准答案"); testCase145(); ballGamePlaying(); System.out.println(); System.out.println("0 - 0 + +:标准答案"); testCase235(); ballGamePlaying(); System.out.println(); System.out.println("+ 0 0 0 0:标准答案"); getInput(); ballGamePlaying(); } static void testCase123() { _arr_n[0] = 1; _arr_n[1] = 2; _arr_n[2] = 3; for (int i = 0; i < 5; i++) { _arr_x[i] = i + 1; } } static void testCase145() { _arr_n[0] = 1; _arr_n[1] = 4; _arr_n[2] = 5; for (int i = 0; i < 5; i++) { _arr_x[i] = i + 10; } _arr_x[4] = 15; } static void testCase235() { _arr_n[0] = 2; _arr_n[1] = 3; _arr_n[2] = 5; for (int i = 0; i < 5; i++) { _arr_x[i] = i + 7; } } }
结果:
+ 0 + 0 -
+ 0 + 0 -:标准答案
0 - 0 + +
0 - 0 + +:标准答案
+ 0 0 0 0
+ 0 0 0 0:标准答案