04-树5 Root of AVL Tree (25分)
题目描述
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
解题思路
直接读取输入序列,一个一个地插入AVL树,最后打印出根结点的值即可。关键在于处理好左单旋、右单旋、左右双旋、右左双旋,其中后两个可以由前两个实现。另外,为了判断是否平衡,需要在结点中添加一个高度字段。
代码
#include <stdio.h>
#include <stdlib.h>
struct AVLNode {
int data;
int height;
struct AVLNode *left;
struct AVLNode *right;
};
typedef struct AVLNode *AVLTree;
AVLTree insert(AVLTree root, int data);
AVLTree singleLeftRotation(AVLTree a);
AVLTree singleRightRotation(AVLTree a);
AVLTree doubleLeftRightRotation(AVLTree a);
AVLTree doubleRightLeftRotation(AVLTree a);
int getHeight(AVLTree root);
int max(int lhs, int rhs);
int main() {
AVLTree root = NULL;
int N, data;
scanf("%d", &N);
for (int i = 0; i < N; i++) {
scanf("%d", &data);
root = insert(root, data);
}
if (root) printf("%d\n", root->data);
return 0;
}
AVLTree insert(AVLTree root, int data) {
if (!root) {
root = (AVLTree) malloc(sizeof(struct AVLNode));
root->data = data; root->height = 0;
root->left = NULL; root->right = NULL;
} else if (data < root->data) {
root->left = insert(root->left, data);
if (getHeight(root->left) - getHeight(root->right) == 2) {
if (data < root->left->data) {
root = singleLeftRotation(root);
} else if (data > root->left->data) {
root = doubleLeftRightRotation(root);
}
}
} else if (data > root->data) {
root->right = insert(root->right, data);
if (getHeight(root->left) - getHeight(root->right) == -2) {
if (data < root->right->data) {
root = doubleRightLeftRotation(root);
} else if (data > root->right->data) {
root = singleRightRotation(root);
}
}
}
root->height = max(getHeight(root->left), getHeight(root->right)) + 1;
return root;
}
AVLTree singleLeftRotation(AVLTree a) {
AVLTree b = a->left;
a->left = b->right;
b->right = a;
a->height = max(getHeight(a->left), getHeight(a->right)) + 1;
b->height = max(getHeight(b->left), a->height) + 1;
return b;
}
AVLTree singleRightRotation(AVLTree a) {
AVLTree b = a->right;
a->right = b->left;
b->left = a;
a->height = max(getHeight(a->left), getHeight(a->right)) + 1;
b->height = max(a->height, getHeight(b->right)) + 1;
return b;
}
AVLTree doubleLeftRightRotation(AVLTree a) {
a->left = singleRightRotation(a->left);
return singleLeftRotation(a);
}
AVLTree doubleRightLeftRotation(AVLTree a) {
a->right = singleLeftRotation(a->right);
return singleRightRotation(a);
}
int getHeight(AVLTree root) {
if (!root) return -1;
else return root->height;
}
int max(int lhs, int rhs) {
return lhs > rhs ? lhs : rhs;
}