[题解] uva 11721 Instant View of Big Bang(spfa求负环)

- 传送门 -

 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2768

# 11721 - Instant View of Big Bang

Time limit: 2.000 seconds |

| Root | Submit Problem Stats
uDebug Download as PDF |

(题面见pdf)

 

- 题意 -

 求图中所有负环上的节点和可以到达负环的节点.
 

- 思路 -

 第一次打负环,还不是很理解...
 判负环的方法: 愚笨的我并没有从网上get到什么信息, 看来看去都是两句话: 当一个点入队超过n(节点数)时, 该节点在负环上(bfs), 当一个点在一条最短路径中出现两次时, 它在最短路径上(dfs).
 然而我没有搞懂这两种方法与spfa, dfs, bfs的关系
 要求可以到达负环的节点, 就要把边反向再对负环上的点进行bfs(dfs), 因为负环上的边全部反向不会影响整个负环, 所以我们可以只记录反向边, 然后直接当标准边来搞.
 
 细节见代码.
 
 PS:
 dfs版的跑得比bfs版的快很多.
 

- 代码 -

 bfs版:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;

const int N = 1000 + 5;
const int M = 2000 + 5;

int TO[M], NXT[M], HD[N], V[M];
int DIS[N], CNT[N], INQ[N], QUE[N*N];
int DQUE[N];
bool OK[N];
int n, m, sz, cas;

void add(int x, int y, int val) {
	TO[++sz] = y; NXT[sz] = HD[x]; HD[x] = sz; V[sz] = val;
}

void init() {
	sz = 0;
	memset(OK, false, sizeof (OK));
	memset(HD, 0, sizeof (HD));
	memset(CNT, 0, sizeof (CNT));
}

void bfs(int x) {
	int head = 0, tail = 0;
	DQUE[++tail] = x;
	while (head < tail) {
		int p = DQUE[++head];
		if (OK[p]) continue;
		OK[p] = true;
		for (int i = HD[p]; i; i = NXT[i])
			if (!OK[TO[i]]) DQUE[++tail] = TO[i];
	}
}//找到一个位于负环上的节点时, 搜索所有可以到达它的节点

void spfa_bfs() {
	int head = 0, tail = 0;
	for (int i = 0; i < n; ++i) {
		DIS[i] = 0;
		QUE[++tail] = i;
		INQ[i] = 1;
	}
	while (head < tail) {
		int p = QUE[++head];
		INQ[p] = 0;
		if (OK[p]) continue;
		for (int i = HD[p]; i; i = NXT[i]) {
			int v = TO[i];
			if (DIS[v] > DIS[p] + V[i] && !OK[v]) {
				DIS[v] = DIS[p] + V[i];
				if (!INQ[v]) {
					INQ[v] = 1;
					QUE[++tail] = v;
					if (++CNT[v] > n)
						bfs(v);  //统计每个点的入队次数
				}
			}
		}
	}
}


int main() {
	scanf("%d", &cas);
	for (int i = 1; i <= cas; ++i) {
		printf("Case %d:", i);
		init();
		scanf("%d%d", &n, &m);
		while (m--) {
			int x, y, k;
			scanf("%d%d%d", &x, &y, &k);
			add(y, x, k);
		}
		spfa_bfs();
		int ans = 1;
		for (int i = 0; i < n; ++i)
			if (OK[i]) {
				ans = 0;
				printf(" %d", i);
			}
		if (ans) printf(" impossible");
		printf("\n");
	}
	return 0;
}

 
 dfs版:
 

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;

const int N = 1000 + 5;
const int M = 2000 + 5;

int TO[M], NXT[M], HD[N], V[M];
int DIS[N], VIS[N];
int DQUE[N];
bool OK[N];
int n, m, sz, cas;

void add(int x, int y, int val) {
	TO[++sz] = y; NXT[sz] = HD[x]; HD[x] = sz; V[sz] = val;
}

void init() {
	sz = 0;
	memset(OK, false, sizeof (OK));
	memset(HD, 0, sizeof (HD));
}

void bfs(int x) {
	int head = 0, tail = 0;
	DQUE[++tail] = x;
	while (head < tail) {
		int p = DQUE[++head];
		if (OK[p]) continue;
		OK[p] = true;
		for (int i = HD[p]; i; i = NXT[i])
			if (!OK[TO[i]]) DQUE[++tail] = TO[i];
	}
}

void spfa_dfs(int x) {
	VIS[x] = 1;
	for (int i = HD[x]; i; i = NXT[i]) {
		int v = TO[i];
		if (OK[v]) continue;
		if (DIS[v] > DIS[x] + V[i])
			if (VIS[v]) {
				bfs(v);
				break; //这里写break可以使VIS数组归0而不需要每次初始化
			}
			else {
				DIS[v] = DIS[x] + V[i];
				spfa_dfs(v);
			}
	}
	VIS[x] = 0;
}


int main() {
	scanf("%d", &cas);
	for (int i = 1; i <= cas; ++i) {
		printf("Case %d:", i);
		init();
		scanf("%d%d", &n, &m);
		while (m--) {
			int x, y, k;
			scanf("%d%d%d", &x, &y, &k);
			add(y, x, k);
		}
		for (int i = 0; i < n; ++i) {
			memset(DIS, 0x3f, sizeof (DIS));
			DIS[i] = 0;
			if (!OK[i]) spfa_dfs(i);
		}
		int ans = 1;
		for (int i = 0; i < n; ++i)
			if (OK[i]) {
				ans = 0;
				printf(" %d", i);
			}
		if (ans) printf(" impossible");
		printf("\n");
	}
	return 0;
}
posted @ 2017-08-12 14:57  lstttt  阅读(171)  评论(0编辑  收藏  举报