摘要:
循环神经网络编码器使用长度可变的序列作为输入,将其编码到循环神经网络编码器固定形状的隐状态中。 为了连续生成输出序列的词元,独立的循环神经网络解码器是基于输入序列的编码信息和输出序列已经看见的或者生成的词元来预测下一个词元。 要点: “<eos>”表示序列结束词元,一旦输出序列生成此词元,模型就会停 阅读全文
摘要:
为了处理这种长度可变的输入和输出, 可以设计一个包含两个主要组件的编码器-解码器(encoder-decoder)架构: 编码器(encoder):它接受一个长度可变的序列作为输入,并将其转换为具有固定形状的编码状态。 解码器(decoder):它将固定形状的编码状态映射到长度可变的序列。 9.6. 阅读全文