《动手学深度学习 Pytorch版》 3.5 图像分类数据集
%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
d2l.use_svg_display()
3.5.1 读取数据集
# 使用比 MNIST 数据集类似但更复杂的 Fashion-MINIST 数据集
trans = transforms.ToTensor() # 将PILImage格式或者numpy.array格式的数据格式化为可被pytorch快速处理的张量类型
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../data\FashionMNIST\raw\train-images-idx3-ubyte.gz
100.0%
Extracting ../data\FashionMNIST\raw\train-images-idx3-ubyte.gz to ../data\FashionMNIST\raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ../data\FashionMNIST\raw\train-labels-idx1-ubyte.gz
100.0%
Extracting ../data\FashionMNIST\raw\train-labels-idx1-ubyte.gz to ../data\FashionMNIST\raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ../data\FashionMNIST\raw\t10k-images-idx3-ubyte.gz
100.0%
Extracting ../data\FashionMNIST\raw\t10k-images-idx3-ubyte.gz to ../data\FashionMNIST\raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ../data\FashionMNIST\raw\t10k-labels-idx1-ubyte.gz
100.0%
Extracting ../data\FashionMNIST\raw\t10k-labels-idx1-ubyte.gz to ../data\FashionMNIST\raw
'''
Fashion-MNIST 由 10 个类别的图像组成,每个类别由训练集的 6000 张图像和测试集的 1000 张图像组成,因此训练集和测试集长度分别为 60000 和 10000。
数据集由灰度图像组成,其通道数为1,每个图像的高度和宽度均为 28 像素。
'''
len(mnist_train), len(mnist_test), mnist_train[0][0].shape
(60000, 10000, torch.Size([1, 28, 28]))
def get_fashion_mnist_labels(labels): #@save
"""返回Fashion-MNIST数据集的文本标签"""
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot'] # Fashion-MNIST 中的 10 个类别
return [text_labels[int(i)] for i in labels]
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""绘制图像列表"""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
# 图片张量
ax.imshow(img.numpy())
else:
# PIL图片
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y)) # 演示绘制训练集前几个样本的图像及标签
array([<AxesSubplot:title={'center':'ankle boot'}>,
<AxesSubplot:title={'center':'t-shirt'}>,
<AxesSubplot:title={'center':'t-shirt'}>,
<AxesSubplot:title={'center':'dress'}>,
<AxesSubplot:title={'center':'t-shirt'}>,
<AxesSubplot:title={'center':'pullover'}>,
<AxesSubplot:title={'center':'sneaker'}>,
<AxesSubplot:title={'center':'pullover'}>,
<AxesSubplot:title={'center':'sandal'}>,
<AxesSubplot:title={'center':'sandal'}>,
<AxesSubplot:title={'center':'t-shirt'}>,
<AxesSubplot:title={'center':'ankle boot'}>,
<AxesSubplot:title={'center':'sandal'}>,
<AxesSubplot:title={'center':'sandal'}>,
<AxesSubplot:title={'center':'sneaker'}>,
<AxesSubplot:title={'center':'ankle boot'}>,
<AxesSubplot:title={'center':'trouser'}>,
<AxesSubplot:title={'center':'t-shirt'}>], dtype=object)
3.5.2 读取小批量
batch_size = 256
def get_dataloader_workers(): #@save
"""使用4个进程来读取数据"""
return 4
train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, # 随机打乱
num_workers=get_dataloader_workers())
timer = d2l.Timer()
for X, y in train_iter:
continue
f'{timer.stop():.2f}sec' # 查看读取训练集所需的时间
'3.74sec'
3.5.3 整合所有组件
def load_data_fashion_mnist(batch_size, resize=None): #@save # resize 可用于指定要调整的图像尺寸
"""下载Fashion-MNIST数据集,然后将其加载到内存中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))
train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
print(X.shape, X.dtype, y.shape, y.dtype)
break
torch.Size([32, 1, 64, 64]) torch.float32 torch.Size([32]) torch.int64
练习
(1)减小 batch_size(如减小到1)是否会影响读取性能?
train_iter = data.DataLoader(mnist_train, 1, shuffle=True, # batch_size 换成 1
num_workers=get_dataloader_workers())
timer = d2l.Timer()
for X, y in train_iter:
continue
f'{timer.stop():.2f}sec' # 读取性能大幅下降
'22.18sec'
(2)数据迭代器的性能非常重要。当前的实现足够快吗?探索各种选择来改进。
torch.utils.data.DataLoader 有个 pin_memory 参数,设置为 True 则开启内存固定,可加快加载速度。
详细参见文档 TORCH.UTILS.DATA
(3)查阅框架的在线 API 文档,还有哪些其他数据集可用?
详见文档 DATASETS
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了