摘要:
Given $p\in M$, locally, there exists a diffemorphism of $T_M$ and $B_r(p)\subset$, this is the most important geometric mapping in Riemannian geometr 阅读全文
摘要:
Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then$u$ is loca 阅读全文
摘要:
Let $f(x)=ax^2+bx+c$ and $|f(0)|,|f(-1)|,|f(1)|\leq 1$. Then show that (1) for any $x\in[-1,1]$, $|f(x)|\leq \frac{5}{4}$. (2) for any $x\in[-1,1]$, $ 阅读全文
摘要:
If $\Delta u=0$ in $\Omega\subset\mathbb{R}^n (n\geq2)$, then for $p>\frac{n-2}{n-1}$, $|Du|^p$ is subharmonic.Proof: For $|Du|(x_0)\neq 0$, we have \ 阅读全文
摘要:
Here, we only consider the codimension one case. Let $F: M\rightarrow R^{n+1}$. Now we calculate the normal variation of the volume 。 Let$\phi\in C^\i 阅读全文
摘要:
In the following, we will give some explanation of the calculation of Riemannian geometry and geometry measure theory. As for our interest, we only co 阅读全文