Mapreduce求气温值项目

Mapreduce前提工作

简单的来说map是大数据,reduce是计算<运行时如果数据量不大,但是却要分工做这就比较花时间了>

首先想要使用mapreduce,需要在linux中进行一些配置:

1.在notepad++里修改yarn-site.xml文件,新添加

<property>

<name>yarn.resourcemanager.hostname</name>

<value>192.168.64.141</value>

</property>

<property>

<name>yarn.nodemanager.aux-service</name>

<value>mapreduce_shuffle</value>

</property>

在notepad++里修改mapred-site.xml文件,新添加

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>
View Code

2.在xshell里将soft/soft/hadoop/etc/hadoop下的mapred-site.xml.template去掉后缀名

    

3.保证在start-dfs.sh、start-yarn.sh服务打开情况下

     

    检测服务是否打开。输入Jps,显示namenod 和 datanod

           

4.到hadoop目录下新建一个有数据的txt

    

    (保存退出是  Esc 后输入:wq!)

5.确保文件存在之后,将其放在hadoop文件下(如果用可视化界面如XFTP比较难找目录,但是使用eclipse上的小蓝象还是挺方便的)

     

6.在我们的ip下查看,已经将hadoop.txt放进了hadoop下

     

    

7.到hadoop下的mapreduce文件下

     

8.在hadoop下运行(这里hadoop-mapreduce-examples-2.7.3.jar是以及放在上面的架包工具)

     

可以看见数据在map和reduce之间传

     

    

    

9.也可以刷新eclipse里面的hadoop文件下的abc.txt查看结果

接下来我们自己来写一个mapreduce吧!

在mapreduce中,map和reduce是有个字不同的所以要单独写成两个类。

1.引入架包

2.创建webapp下的WEB-INF文件下的web.xml

    

2.建类

  Worldcount项目

    Mapper代码:

package com.nenu.mprd.test;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MyMap extends Mapper<LongWritable, Text, Text, IntWritable> {
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
            throws IOException, InterruptedException {
        // TODO Auto-generated method stub
        String line=value.toString();
        String[] words=line.split(" ");
        for (String word : words) {
            context.write(new Text(word.trim()), new IntWritable(1));
        }
    }
}
View Code

    Reduce代码:

package com.nenu.mprd.test;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MyReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,
            Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
        // TODO Auto-generated method stub
        int sum=0;
        for (IntWritable intWritable : values) {
            sum+=intWritable.get();
        }
        context.write(key, new IntWritable(sum));
    }
}
View Code

    Job代码:

package com.nenu.mprd.test;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class MyJob extends Configured implements Tool{
    
    public static void main(String[] args) throws Exception {
        MyJob myJob=new MyJob();
        ToolRunner.run(myJob, null);
    }
    @Override
    public int run(String[] args) throws Exception {
        // TODO Auto-generated method stub
        Configuration conf=new Configuration();
        conf.set("fs.defaultFS", "hdfs://192.168.64.141:9000");
        Job job=Job.getInstance(conf);
        job.setJarByClass(MyJob.class);
        job.setMapperClass(MyMap.class);
        job.setReducerClass(MyReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path("/hadoop/hadoop.txt"));
        FileOutputFormat.setOutputPath(job, new Path("/hadoop/out"));
        job.waitForCompletion(true);
        return 0;
    }

}
View Code

  Weather平均气温项目:

    Mapper代码:

package com.nenu.weathermyreduce.test;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.InputSplit; 
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

//传入文件 输出拆分后的每个单词
public class MyMap extends Mapper<LongWritable, Text, Text, IntWritable> {
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
            throws IOException, InterruptedException {
        // TODO Auto-generated method stub
        //获取文件目录下的每个文件的部分文件名 
        FileSplit filesplit = (FileSplit)context.getInputSplit();
        String fileName =  filesplit.getPath().getName().substring(5,10).trim();
        //获取气温值
        //每次只处理一行  字符偏移量下一行第一个字符为上一行最后一个字符位+1
        //按行提取字符串
        String line=value.toString();
        //获取对应位置上的气温
        Integer val =Integer.parseInt(line.substring(13, 19).trim());//去掉空格
        //文件名作为输出key 获取的气温值作为value
        //相同的key会交给同一个reduce进行计算
        context.write(new Text(fileName), new IntWritable(val));
    }
}
View Code

    Reduce代码:

package com.nenu.weathermyreduce.test;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

//输入单词 输出混洗、统计结果和
public class MyReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,
            Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
        // TODO Auto-generated method stub
        
        //求平均数
        
            //计数 一共有多少个数据
            int sum=0;//
            int count=0;//计算
            for (IntWritable val : values) {
                count++;
                sum+=val.get();//转换为int类型
            }
            int average = sum/count;
            context.write(key, new IntWritable(average));
    
    }
}
View Code

    Myjob代码:

package com.nenu.weathermyreduce.test;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class MyJob extends Configured implements Tool{
    
    public static void main(String[] args) throws Exception {
        MyJob myJob=new MyJob();
        ToolRunner.run(myJob, null);
    }
    @Override
    public int run(String[] args) throws Exception {
        // TODO Auto-generated method stub
        Configuration conf=new Configuration();
        conf.set("fs.defaultFS", "hdfs://192.168.64.141:9000");
        Job job=Job.getInstance(conf);
        job.setJarByClass(MyJob.class);
        job.setMapperClass(MyMap.class);
        job.setReducerClass(MyReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path("/hadoop/weather"));
        FileOutputFormat.setOutputPath(job, new Path("/hadoop/weather/out"));
        job.waitForCompletion(true);
        return 0;
    }

}
View Code

 

3.开启服务,dfs+yarn。(所有mapreduce项目都需要开启yarn,yarn下管理资源和节点)

4.运行job类

Job的任务:

  是mapreduce程序运行的主类。指定使用的是哪个mapper哪个reduce

  指定mapper、reduce输入输出的key-value类型

  以及输入、输出的数据位置

    要说明的一点是,在我的程序中Job提交---一般是用waitforCompletion(true)可以看见运行过程(不用submit)

        

 

posted @ 2018-07-24 15:00  陶雨洁  阅读(453)  评论(0编辑  收藏  举报