机器学习 MLIA学习笔记(三)之 KNN(二) Dating可能性实例
这是个KNN算法的另一实例,计算Dating的可能性。
import numpy as np import os import operator import matplotlib import matplotlib.pyplot as plt def classify(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0]#lines num; samples num diffMat = np.tile(inX, (dataSetSize,1)) - dataSet#dataSize*(1*inX) sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1)#add as the first dim distances = sqDistances**0.5 #return indicies array from min to max #this is an array sortedDistanceIndices = distances.argsort() #classCount={} classCount=dict() #define a dictionary for i in range(k): voteIlabel = labels[sortedDistanceIndices[i]] classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1#get(key,default=none) #return a list like [('C',4),('B',3),('A',2)], not a dict #itemgetter(0) is the 1st element #default: from min to max sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] def file2matrix(fileName): fileHandler = open(fileName) numberOfLines = len(fileHandler.readlines()) #get the number of lines in the file returnMat = np.zeros((numberOfLines, 3)) #init a zero return matrix classLabelVector = [] #classLabelVector = list() #will be used to record labels fileHandler = open(fileName) index = 0 for line in fileHandler.readlines(): line = line.strip() #strip blank characters listFromLine = line.split('\t') returnMat[index,:] = listFromLine[0:3] classLabelVector.append(listFromLine[-1]) index += 1 return returnMat, classLabelVector #normalize data set def autoNorm(dataSet): minVal = dataSet.min(0) maxVal = dataSet.max(0) ranges = maxVal - minVal normDataSet = np.zeros(np.shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - np.tile(minVal, (m,1)) normDataSet = normDataSet/np.tile(ranges, (m,1)) return normDataSet, ranges, minVal def showMatrix(): m,l = file2matrix("datingTestSet.txt") m,r,mv = autoNorm(m) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(m[:,1],m[:,2]) plt.show() #calculate the error rate of sample def calcErrorRate(): ratio = 0.1 #only use 10% samples to calc the error rate matrix,l = file2matrix("datingTestSet.txt") matrix,r,mv = autoNorm(matrix) m = matrix.shape[0] numTestSample = int(m*ratio) errorCount = 0 for i in range(numTestSample): classifyResult = classify(matrix[i,:], matrix[numTestSample:m,:],l[numTestSample:m],3) print "the classifier came back with: %s, the real answer is: %s" % (classifyResult, l[i]) if (classifyResult != l[i]): errorCount += 1 print "the total error rate is: %f" %(errorCount/float(numTestSample)) print errorCount def classifyPerson(): percentTats = float(raw_input(\ "percentage of time spent playing vedio games?")) ffMiles = float(raw_input("frequent flier miles earned per year?")) iceCream = float(raw_input("liters of ice cream consumed per year?")) datingDataMat, datingLabels = file2matrix("datingTestSet.txt") normMat, ranges, minVal = autoNorm(datingDataMat) inArr = np.array([ffMiles, percentTats, iceCream]) classifyResult = classify((inArr-minVal)/ranges, normMat, datingLabels,3) print "You will probaly like this person: ", classifyResult