机器学习十讲——第九讲学习总结
应用
图像识别:IMAGENET。
机器翻译:Google神经机器翻译系统。
语音识别:
以往GMM-HMM传统方法一直未有突破,2011年使用DNN后获得较大突破,2015年,IBM再次将错误率降低到6.9%,接近人类的平均水平(4%)
游戏:DeepMind团队开发的自我学习玩游戏的系统。
发展原因
大规模高质量标注数据集出现:IMAGENET
并行运算(如GPU)的发展
更好的非线性激活函数的使用:ReLU代替Logistic
更多优秀的网络结构的发明:ResNet,GoogleNet和AlexNet
深度学习开发平台的发展:TensorFlow,PyTorch和MXNet等
新的正则化技术出现:批标准化,Dropout等
更多稳健的优化算法:SGD的变种:RMSprop,Adam等。