2016级算法期末上机-H.难题·AlvinZH's Fight with DDLs III

1119 AlvinZH's Fight with DDLs III

思路

难题,最小点覆盖。

分析题意,某一个任务,既可以在笔记本A的 \(a\) 模式下完成,也可以在笔记本B的 \(b\) 模式下完成。如果笔记本A处于x模式,那么所有可以在笔记本x模式的任务可以一起完成,B同理。这两句话作为题目核心,该如何转化呢?

对于每个任务对应的(a,b),我们把它映射到平面坐标当中,明显发现,此题和二营长,你他娘的意大利炮呢简直一模一样。其实就是一个最小点覆盖问题,也就是最大二分图匹配问题。

关于最小点覆盖问题为什么等价于最大二分图匹配,第五次讲解课上有证明,期末练习赛E题难题·AlvinZH的青春记忆III大家也遇到过,不知道你真的好好练习了吗?

采用经典的匈牙利算法,构建图时需要注意,由于笔记本AB最初都处于模式0,也就是说若a或b等于0,这个任务可以直接忽略。

分析

二分图匹配算法

1.匈牙利算法:其本质就是,有条件就上,没条件创造条件也要上。DFS与BFS都可,时间复杂度均为 \(O(V⋅E)\) 。实际对于稀疏图BFS更佳。

2.Hopcroft-Karp算法:匈牙利算法的改进版,每次寻找多条增广路径。时间复杂度可以到达 \(O(n^{0.5}*m)\)

3.Dinic算法:二分图匹配其实是一个最大流问题,Dinic是一种优化过的求解最大流算法。与朴素的FF算法(\(O(n*m^2)\))不同,其可以同时多路增广。求解二分图时,构建超级源点和超级汇点,匹配边权值为1,求最大流即可。理论最坏复杂度为 \(O(n^2m)\) ,稠密图时比匈牙利DFS快了不少。

参考博客:二分图;
匈牙利算法;
Hopcroft-Karp算法;
Dinic算法

参考代码

/* 
 Author: 朱辉(35)
 Result: AC	Submission_id: 514523
 Created at: Mon Dec 25 2017 00:33:21 GMT+0800 (CST)
 Problem: 1119	Time: 82	Memory: 3024
*/

#include <cstdio>
#include <cstring>
#include <vector>
#define MaxSize 10005
using namespace std;

int n, m, k;
vector<int> G[MaxSize];//邻接矩阵
int match[MaxSize];//记录匹配点
int visit[MaxSize];//记录是否访问

bool dfs(int x)//寻找增广路径
{
    for (int i = 0; i < G[x].size(); ++i)
    {
        int to = G[x][i];
        if(!visit[to])
        {
            visit[to] = 1;
            if(!match[to] || dfs(match[to]))
            {
                match[to] = x;
                return true;
            }
        }
    }
    return false;
}

int MaxMatch()
{
    int ans = 0;
    memset(match, 0, sizeof(match));
    for (int i = 1; i <= n-1; ++i)
    {
        memset(visit, 0, sizeof(visit));//清空访问
        if(dfs(i)) ans++;//从节点i尝试扩展
    }
    return ans;
}

int main()
{
    while(~scanf("%d %d %d", &n, &m, &k))
    {
        for (int i = 0; i <= n; ++i)
            G[i].clear();

        int a, b;
        for (int i = 1; i <= k; ++i) {
            scanf("%d %d", &a, &b);
            if(a*b != 0)
                G[a].push_back(b);
        }

        printf("%d\n", MaxMatch());
    }
}
posted @ 2018-01-07 00:20  AlvinZH  阅读(588)  评论(0编辑  收藏  举报