网络协议

TCP/IP 协议栈

  • Transmission Control Protocol/Internet Protocol 传输控制协议/因特网互联协议
  • TCP/IP是一个Protocol Stack,包括TCP、IP、UDP、 ICMP、RIP、TELNET、FTP、SMTP、ARP等许多协议
  • 最早发源于美国国防部(缩写为DoD)的因特网的前身 ARPA网项目,1983年1月1日,TCP/IP取代了旧的网络 控制协议NCP,成为今天的互联网和局域网的基石和标 准,由互联网工程任务组负责维护
  • 共定义了四层
  • 和ISO参考模型的分层有对应关系
TCP特性

• 工作在传输层
• 面向连接协议
• 全双工协议
• 半关闭
• 错误检查
• 将数据打包成段,排序
• 确认机制
• 数据恢复,重传
• 流量控制,滑动窗口
• 拥塞控制,慢启动和拥塞避免算法

TCP包头
  • 源端口、目标端口:计算机上的进程要和其他进程通信是要通过计算机端口的, 而一个计算机端口某个时刻只能被一个进程占用,所以通过指定源端口和目标 端口,就可以知道是哪两个进程需要通信。源端口、目标端口是用16位表示的,
  • 序列号:表示本报文段所发送数据的第一个字节的编号。在TCP连接中所传送的 字节流的每一个字节都会按顺序编号。由于序列号由32位表示,所以每2^32个 字节,就会出现序列号回绕,再次从 0 开始
  • 确认号:表示接收方期望收到发送方下一个报文段的第一个字节数据的编号。 也就是告诉发送方:我希望你(指发送方)下次发送的数据的第一个字节数据 的编号为此确认号
  • 数据偏移:表示TCP报文段的首部长度,共4位,由于TCP首部包含一个长度可 变的选项部分,需要指定这个TCP报文段到底有多长。它指出 TCP 报文段的数 据起始处距离 TCP 报文段的起始处有多远。该字段的单位是32位(即4个字节为 计算单位),4位二进制最大表示15,所以数据偏移也就是TCP首部最大60字节
  • URG:表示本报文段中发送的数据是否包含紧急数据。后面的紧急指针字段(urgent pointer)只有当URG=1时才有效
  • ACK:表示是否前面确认号字段是否有效。只有当ACK=1时,前面的确认号字段才有效。 TCP规定,连接建立后,ACK必须为1,带ACK标志的TCP报文段称为确认报文段
  • PSH:提示接收端应用程序应该立即从TCP接收缓冲区中读走数据,为接收后续数据腾出空 间。如果为1,则表示对方应当立即把数据提交给上层应用,而不是缓存起来,如果应用程序 不将接收到的数据读走,就会一直停留在TCP接收缓冲区中
  • RST:如果收到一个RST=1的报文,说明与主机的连接出现了严重错误(如主机崩溃),必 须释放连接,然后再重新建立连接。或者说明上次发送给主机的数据有问题,主机拒绝响应, 带RST标志的TCP报文段称为复位报文段
  • SYN:在建立连接时使用,用来同步序号。当SYN=1,ACK=0时,表示这是一个请求建立连 接的报文段;当SYN=1,ACK=1时,表示对方同意建立连接。SYN=1,说明这是一个请求 建立连接或同意建立连接的报文。只有在前两次握手中SYN才置为1,带SYN标志的TCP报文 段称为同步报文段
  • FIN:表示通知对方本端要关闭连接了,标记数据是否发送完毕。如果FIN=1,即告诉对方: “我的数据已经发送完毕,你可以释放连接了”,带FIN标志的TCP报文段称为结束报文段
  • 窗口大小:表示现在允许对方发送的数据量,也就是告诉对方,从本报文段 的确认号开始允许对方发送的数据量,达到此值,需要ACK确认后才能再继 续传送后面数据,由Window size value * Window size scaling factor (此值在三次握手阶段TCP选项Window scale协商得到)得出此值
  • 校验和:提供额外的可靠性
  • 紧急指针:标记紧急数据在数据字段中的位置
  • 选项部分:其最大长度可根据TCP首部长度进行推算。TCP首部长度用4位表 示,选项部分最长为:(2^4-1)*4-20=40字节 常见选项:
    最大报文段长度:Maxium Segment Size,MSS,通常1460字节
    窗口扩大:Window Scale
    时间戳: Timestamps
TCP包头选项
  • 1 最大报文段长度MSS(Maximum Segment Size) 指明自己期望对方发送TCP报文段时那个数据字段的长度。比如:1460字节。数 据字段的长度加上TCP首部的长度才等于整个TCP报文段的长度。MSS不宜设的太 大也不宜设的太小。若选择太小,极端情况下,TCP报文段只含有1字节数据,在 IP层传输的数据报的开销至少有40字节(包括TCP报文段的首部和IP数据报的首 部)。这样,网络的利用率就不会超过1/41。若TCP报文段非常长,那么在IP层传 输时就有可能要分解成多个短数据报片。在终点要把收到的各个短数据报片装配成 原来的TCP报文段。当传输出错时还要进行重传,这些也都会使开销增大。因此 MSS应尽可能大,只要在IP层传输时不需要再分片就行。在连接建立过程中,双 方都把自己能够支持的MSS写入这一字段。 MSS只出现在SYN报文中。即:MSS 出现在SYN=1的报文段中 MTU和MSS值的关系:MTU=MSS+IP Header+TCP Header 通信双方最终的MSS值=较小MTU-IP Header-TCP Header
  • 2 窗口扩大 为了扩大窗口,由于TCP首部的窗口大小字段长度是16位,所以其表示的最大数是 65535。但是随着时延和带宽比较大的通信产生(如卫星通信),需要更大的窗口 来满足性能和吞吐率,所以产生了这个窗口扩大选项
  • 3 时间戳 可以用来计算RTT(往返时间),发送方发送TCP报文时,把当前的时间值放入时间 戳字段,接收方收到后发送确认报文时,把这个时间戳字段的值复制到确认报文中, 当发送方收到确认报文后即可计算出RTT。也可以用来防止回绕序号PAWS,也可 以说可以用来区分相同序列号的不同报文。因为序列号用32为表示,每2^32个序 列号就会产生回绕,那么使用时间戳字段就很容易区分相同序列号的不同报文
TCP协议PORT
  • 传输层通过port号,确定应用层协议
  • Port number:
  • tcp:传输控制协议,面向连接的协议;通信前需要建立虚拟链路;结束后拆除链路
    0-65535
  • udp:User Datagram Protocol,无连接的协议
    0-65535
  • IANA:互联网数字分配机构(负责域名,数字资源,协议分配)
    • 0-1023:系统端口或特权端口(仅管理员可用) ,众所周知,永久的分配给固定的
    • 系统应用使用,22/tcp(ssh), 80/tcp(http), 443/tcp(https)
    • 1024-49151:用户端口或注册端口,但要求并不严格,分配给程序注册为某应 用使用,1433/tcp(SqlServer), 1521/tcp(oracle),3306/tcp(mysql),11211/tcp/udp (memcached)
    • 49152-65535:动态端口或私有端口,客户端程序随机使用的端口
    • 其范围的定义:/proc/sys/net/ipv4/ip_local_port_range
有限状态机FSM:Finite State Machine

• CLOSED 没有任何连接状态
• LISTEN 侦听状态,等待来自远方TCP端口的连接请求
• SYN-SENT 在发送连接请求后,等待对方确认
• SYN-RECEIVED 在收到和发送一个连接请求后,等待对方确认
• ESTABLISHED 代表传输连接建立,双方进入数据传送状态
• FIN-WAIT-1 主动关闭,主机已发送关闭连接请求,等待对方确认
• FIN-WAIT-2 主动关闭,主机已收到对方关闭传输连接确认,等待对方发送关闭传输连接请求
• TIME-WAIT 完成双向传输连接关闭,等待所有分组消失
• CLOSE-WAIT 被动关闭,收到对方发来的关闭连接请求,并已确认
• LAST-ACK 被动关闭,等待最后一个关闭传输连接确认,并等待所有分组消失
• CLOSING 双方同时尝试关闭传输连接,等待对方确认

  • 客户端先发送一个FIN给服务端,自己进入了FIN_WAIT_1状态,这时等待接收 服务端的报文,该报文会有三种可能:
    • 只有服务端的ACK
    • 只有服务端的FIN
    • 基于服务端的ACK,又有FIN
  • 1、只收到服务器的ACK,客户端会进入FIN_WAIT_2状态,后续当收到服务端 的FIN时,回应发送一个ACK,会进入到TIME_WAIT状态,这个状态会持续 2MSL(TCP报文段在网络中的最大生存时间, RFC 1122标准的建议值是2min). 客户端等待2MSL,是为了当最后一个ACK丢失时,可以再发送一次。因为服务 端在等待超时后会再发送一个FIN给客户端,进而客户端知道ACK已丢失
  • 2、只有服务端的FIN时,回应一个ACK给服务端,进入CLOSING状态,然后接 收到服务端的ACK时,进入TIME_WAIT状态
  • 3、同时收到服务端的ACK和FIN,直接进入TIME_WAIT状态
客户端的典型状态转移
  • 客户端通过connect系统调用主动与服务器建立连接connect系统调用首先给服 务器发送一个同步报文段,使连接转移到SYN_SENT状态
  • 此后connect系统调用可能因为如下两个原因失败返回:
  • 1、如果connect连接的目标端口不存在(未被任何进程监听),或者该端口仍 被处于TIME_WAIT状态的连接所占用(见后文),则服务器将给客户端发送一 个复位报文段,connect调用失败。
  • 2、如果目标端口存在,但connect在超时时间内未收到服务器的确认报文段, 则connect调用失败。
  • connect调用失败将使连接立即返回到初始的CLOSED状态。如果客户端成功收 到服务器的同步报文段和确认,则connect调用成功返回,连接转移至 ESTABLISHED状态
  • 当客户端执行主动关闭时,它将向服务器发送一个结束报文段,同时连接进入 FIN_WAIT_1状态。若此时客户端收到服务器专门用于确认目的的确认报文段, 则连接转移至FIN_WAIT_2状态。当客户端处于FIN_WAIT_2状态时,服务器处 于CLOSE_WAIT状态,这一对状态是可能发生半关闭的状态。此时如果服务器 也关闭连接(发送结束报文段),则客户端将给予确认并进入TIME_WAIT状态
  • 客户端从FIN_WAIT_1状态可能直接进入TIME_WAIT状态(不经过FIN_WAIT_2 状态),前提是处于FIN_WAIT_1状态的服务器直接收到带确认信息的结束报文 段(而不是先收到确认报文段,再收到结束报文段)
  • 处于FIN_WAIT_2状态的客户端需要等待服务器发送结束报文段,才能转移至 TIME_WAIT状态,否则它将一直停留在这个状态。如果不是为了在半关闭状态 下继续接收数据,连接长时间地停留在FIN_WAIT_2状态并无益处。连接停留在 FIN_WAIT_2状态的情况可能发生在:客户端执行半关闭后,未等服务器关闭连 接就强行退出了。此时客户端连接由内核来接管,可称之为孤儿连接(和孤儿 进程类似)
  • Linux为了防止孤儿连接长时间存留在内核中,定义了两个内核参数:
  • /proc/sys/net/ipv4/tcp_max_orphans 指定内核能接管的孤儿连接数目
  • /proc/sys/net/ipv4/tcp_fin_timeout 指定孤儿连接在内核中生存的时间
TCP超时重传
  • 异常网络状况下(开始出现超时或丢包),TCP控制数据传输以保证其承诺的可 靠服务
  • TCP服务必须能够重传超时时间内未收到确认的TCP报文段。为此,TCP模块为 每个TCP报文段都维护一个重传定时器,该定时器在TCP报文段第一次被发送时 启动。如果超时时间内未收到接收方的应答,TCP模块将重传TCP报文段并重置 定时器。至于下次重传的超时时间如何选择,以及最多执行多少次重传,就是 TCP的重传策略
  • 与TCP超时重传相关的两个内核参数:
  • /proc/sys/net/ipv4/tcp_retries1,指定在底层IP接管之前TCP最少执行的重传 次数,默认值是3
  • /proc/sys/net/ipv4/tcp_retries2,指定连接放弃前TCP最多可以执行的重传次 数,默认值15(一般对应13~30min)
拥塞控制
  • 网络中的带宽、交换结点中的缓存和处理机等,都是网络的资源。在某段时间, 若对网络中某一资源的需求超过了该资源所能提供的可承受的能力,网络的性 能就会变坏。此情况称为拥塞
  • TCP为提高网络利用率,降低丢包率,并保证网络资源对每条数据流的公平性。 即所谓的拥塞控制
  • TCP拥塞控制的标准文档是RFC 5681,其中详细介绍了拥塞控制的四个部分: 慢启动(slow start)、拥塞避免(congestion avoidance)、快速重传(fast retransmit)和快速恢复(fast recovery)。拥塞控制算法在Linux下有多种实 现,比如reno算法、vegas算法和cubic算法等。它们或者部分或者全部实现了 上述四个部分
  • 当前所使用的拥塞控制算法 /proc/sys/net/ipv4/tcp_congestion_control
UDP特性

• 工作在传输层
• 提供不可靠的网络访问
• 非面向连接协议
• 有限的错误检查
• 传输性能高
• 无数据恢复特性

posted @ 2018-10-31 20:50  AloneSea  阅读(212)  评论(0编辑  收藏  举报