TF 保存模型为 .pb格式
将网络模型,图加权值,保存为.pb文件 write.py
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import shutil import os.path export_dir = '../model/' if os.path.exists(export_dir): shutil.rmtree(export_dir) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') mnist = input_data.read_data_sets("../MNIST_data/", one_hot=True) with tf.Graph().as_default(): ## 变量占位符定义 x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) ## 定义网络结构 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) # y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) ## 定义损失及优化器 cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) with tf.Session() as sess: ## 初始化变量 sess.run(tf.global_variables_initializer()) for i in range(201): batch = mnist.train.next_batch(50) if i % 100 == 0: ## 验证阶段dropout比率为1 train_accuracy = sess.run(accuracy, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) print "step %d, training accuracy %g" % (i, train_accuracy) sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) ## 将网络中的权值变量取出来 _W_conv1 = sess.run(W_conv1) _b_conv1 = sess.run(b_conv1) _W_conv2 = sess.run(W_conv2) _b_conv2 = sess.run(b_conv2) _W_fc1 = sess.run(W_fc1) _b_fc1 = sess.run(b_fc1) _W_fc2 = sess.run(W_fc2) _b_fc2 = sess.run(b_fc2) ## 创建另外一个图,验证权值的正确性并save model with tf.Graph().as_default(): ## 定义变量占位符 x_2 = tf.placeholder("float", shape=[None, 784], name="input") y_2 = tf.placeholder("float", [None, 10]) ## 网络的权重用上一个图中已经学习好的对应值 W_conv1_2 = tf.constant(_W_conv1, name="constant_W_conv1") b_conv1_2 = tf.constant(_b_conv1, name="constant_b_conv1") x_image_2 = tf.reshape(x_2, [-1, 28, 28, 1]) h_conv1_2 = tf.nn.relu(conv2d(x_image_2, W_conv1_2) + b_conv1_2) h_pool1_2 = max_pool_2x2(h_conv1_2) # W_conv2_2 = tf.constant(_W_conv2, name="constant_W_conv2") b_conv2_2 = tf.constant(_b_conv2, name="constant_b_conv2") h_conv2_2 = tf.nn.relu(conv2d(h_pool1_2, W_conv2_2) + b_conv2_2) h_pool2_2 = max_pool_2x2(h_conv2_2) # W_fc1_2 = tf.constant(_W_fc1, name="constant_W_fc1") b_fc1_2 = tf.constant(_b_fc1, name="constant_b_fc1") h_pool2_flat_2 = tf.reshape(h_pool2_2, [-1, 7 * 7 * 64]) h_fc1_2 = tf.nn.relu(tf.matmul(h_pool2_flat_2, W_fc1_2) + b_fc1_2) # # DropOut is skipped for exported graph. ## 由于是验证过程,所以dropout层去掉,也相当于keep_prob为1 # W_fc2_2 = tf.constant(_W_fc2, name="constant_W_fc2") b_fc2_2 = tf.constant(_b_fc2, name="constant_b_fc2") # y_conv_2 = tf.nn.softmax(tf.matmul(h_fc1_2, W_fc2_2) + b_fc2_2, name="output") with tf.Session() as sess_2: sess_2.run(tf.global_variables_initializer()) tf.train.write_graph(sess_2.graph_def, export_dir, 'expert-graph.pb', as_text=False) correct_prediction_2 = tf.equal(tf.argmax(y_conv_2, 1), tf.argmax(y_2, 1)) accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, "float")) print('check accuracy %g' % sess_2.run(accuracy_2, feed_dict={x_2: mnist.test.images, y_2: mnist.test.labels}))
从.pb文件中还原网络模型 load.py
#! -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets("../MNIST_data/", one_hot=True) with tf.Graph().as_default(): output_graph_def = tf.GraphDef() output_graph_path = '../model/expert-graph.pb' with open(output_graph_path, 'rb') as f: output_graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(output_graph_def, name="") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) input = sess.graph.get_tensor_by_name("input:0") output = sess.graph.get_tensor_by_name("output:0") y_conv_2 = sess.run(output, feed_dict={input:mnist.test.images}) y_2 = mnist.test.labels correct_prediction_2 = tf.equal(tf.argmax(y_conv_2, 1), tf.argmax(y_2, 1)) accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, "float")) print "check accuracy %g" % sess.run(accuracy_2)
参考:
https://blog.csdn.net/guvcolie/article/details/77478973