PCA python 实现
PCA 实现:
参考博客:https://blog.csdn.net/u013719780/article/details/78352262
from __future__ import print_function from sklearn import datasets import matplotlib.pyplot as plt import matplotlib.cm as cmx import matplotlib.colors as colors import numpy as np # matplotlib inline def shuffle_data(X, y, seed=None): if seed: np.random.seed(seed) idx = np.arange(X.shape[0]) np.random.shuffle(idx) return X[idx], y[idx] # 正规化数据集 X def normalize(X, axis=-1, p=2): lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis)) lp_norm[lp_norm == 0] = 1 return X / np.expand_dims(lp_norm, axis) # 标准化数据集 X def standardize(X): X_std = np.zeros(X.shape) mean = X.mean(axis=0) std = X.std(axis=0) # 做除法运算时请永远记住分母不能等于0的情形 # X_std = (X - X.mean(axis=0)) / X.std(axis=0) for col in range(np.shape(X)[1]): if std[col]: X_std[:, col] = (X_std[:, col] - mean[col]) / std[col] return X_std # 划分数据集为训练集和测试集 def train_test_split(X, y, test_size=0.2, shuffle=True, seed=None): if shuffle: X, y = shuffle_data(X, y, seed) n_train_samples = int(X.shape[0] * (1-test_size)) x_train, x_test = X[:n_train_samples], X[n_train_samples:] y_train, y_test = y[:n_train_samples], y[n_train_samples:] return x_train, x_test, y_train, y_test # 计算矩阵X的协方差矩阵 def calculate_covariance_matrix(X, Y=np.empty((0,0))): if not Y.any(): Y = X n_samples = np.shape(X)[0] covariance_matrix = (1 / (n_samples-1)) * (X - X.mean(axis=0)).T.dot(Y - Y.mean(axis=0)) return np.array(covariance_matrix, dtype=float) # 计算数据集X每列的方差 def calculate_variance(X): n_samples = np.shape(X)[0] variance = (1 / n_samples) * np.diag((X - X.mean(axis=0)).T.dot(X - X.mean(axis=0))) return variance # 计算数据集X每列的标准差 def calculate_std_dev(X): std_dev = np.sqrt(calculate_variance(X)) return std_dev # 计算相关系数矩阵 def calculate_correlation_matrix(X, Y=np.empty([0])): # 先计算协方差矩阵 covariance_matrix = calculate_covariance_matrix(X, Y) # 计算X, Y的标准差 std_dev_X = np.expand_dims(calculate_std_dev(X), 1) std_dev_y = np.expand_dims(calculate_std_dev(Y), 1) correlation_matrix = np.divide(covariance_matrix, std_dev_X.dot(std_dev_y.T)) return np.array(correlation_matrix, dtype=float) class PCA(): """ 主成份分析算法PCA,非监督学习算法. """ def __init__(self): self.eigen_values = None self.eigen_vectors = None self.k = 2 def transform(self, X): """ 将原始数据集X通过PCA进行降维 """ covariance = calculate_covariance_matrix(X) # 求解特征值和特征向量 self.eigen_values, self.eigen_vectors = np.linalg.eig(covariance) # 将特征值从大到小进行排序,注意特征向量是按列排的,即self.eigen_vectors第k列是self.eigen_values中第k个特征值对应的特征向量 idx = self.eigen_values.argsort()[::-1] eigenvalues = self.eigen_values[idx][:self.k] eigenvectors = self.eigen_vectors[:, idx][:, :self.k] # 将原始数据集X映射到低维空间 X_transformed = X.dot(eigenvectors) return X_transformed def main(): # Load the dataset data = datasets.load_iris() X = data.data y = data.target # 将数据集X映射到低维空间 X_trans = PCA().transform(X) x1 = X_trans[:, 0] x2 = X_trans[:, 1] print(X[0:2]) cmap = plt.get_cmap('viridis') colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))] class_distr = [] # Plot the different class distributions for i, l in enumerate(np.unique(y)): _x1 = x1[y == l] _x2 = x2[y == l] _y = y[y == l] class_distr.append(plt.scatter(_x1, _x2, color=colors[i])) # Add a legend plt.legend(class_distr, y, loc=1) # Axis labels plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') plt.show() if __name__ == "__main__": main()
kPCA
1、核主成份分析 Kernel Principle Component Analysis:
1)现实世界中,并不是所有数据都是线性可分的
2)通过LDA,PCA将其转化为线性问题并不是好的方法
3)线性可分 VS 非线性可分
2、引入核主成份分析:
可以通过kPCA将非线性数据映射到高维空间,在高维空间下使用标准PCA将其映射到另一个低维空间
3、原理:
定义非线性映射函数,该函数可以对原始特征进行非线性组合,以将原始的d维数据集映射到更高维的k维特征空间。
1)多项式核
2)双曲正切核
3)径向基核(RBF),高斯核函数
基于RBF核的kPCA算法流程:
Python 代码:
from scipy.spatial.distance import pdist, squareform from scipy import exp from numpy.linalg import eigh import numpy as np def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.linalg.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() # 直接用PCA from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() # KPCA from matplotlib.ticker import FormatStrFormatter X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3)) ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() #sklearn kpca from sklearn.decomposition import KernelPCA X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show()
参考: https://blog.csdn.net/weixin_40604987/article/details/79632888