降维算法整理--- PCA、KPCA、LDA、MDS、LLE 等

转自github: https://github.com/heucoder/dimensionality_reduction_alo_codes

网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码;在此通过借鉴资料实现了一些经典降维算法的Demo(python),同时也给出了参考资料的链接。

降维算法资料链接展示
PCA

https://blog.csdn.net/u013719780/article/details/78352262

https://blog.csdn.net/weixin_40604987/article/details/79632888

PCA
KPCA

https://blog.csdn.net/u013719780/article/details/78352262

https://blog.csdn.net/weixin_40604987/article/details/79632888

KPCA
LDA

https://blog.csdn.net/ChenVast/article/details/79227945

https://www.cnblogs.com/pinard/p/6244265.html

LDA
MDS https://blog.csdn.net/zhangweiguo_717/article/details/69663452?locationNum=10&fps=1 MDS Tensor-MDS
ISOMAP

https://blog.csdn.net/zhangweiguo_717/article/details/69802312 

http://www-clmc.usc.edu/publications/T/tenenbaum-Science2000.pdf

ISOMAP
LLE

https://blog.csdn.net/scott198510/article/details/76099630

https://www.cnblogs.com/pinard/p/6266408.html?utm_source=itdadao&utm_medium=referral

LLE
TSNE http://bindog.github.io/blog/2018/07/31/t-sne-tips/ TSNE
AutoEncoder 无  AutoEncoder
FastICA https://blog.csdn.net/lizhe_dashuju/article/details/50263339  
SVD

https://blog.csdn.net/m0_37870649/article/details/80547167

https://www.cnblogs.com/pinard/p/6251584.html

 
LE

https://blog.csdn.net/hustlx/article/details/50850342#

https://blog.csdn.net/jwh_bupt/article/details/8945083

LE
LPP

https://blog.csdn.net/qq_39187538/article/details/90402961

https://blog.csdn.net/xiaohen123456/article/details/82288222


每一个代码都可以单独运行,但是只是作为一个demo,仅供学习使用
环境: python3.6 ubuntu18.04(windows10)
 需要的库: numpy sklearn tensorflow matplotlib

  • 其中AutoEncoder只是使用AutoEncoder简单的实现了一个PCA降维算法,自编码器涉及到了深度学习领域,其本身就是一个非常大领域
  • LE算法的鲁棒性极差,对近邻的选择和数据分布十分敏感
  • 2019.6.20添加了LPP算法,但是效果没有论文上那么好,有点迷,后续需要修改

 

posted @ 2019-08-26 18:11  静悟生慧  阅读(1609)  评论(1编辑  收藏  举报