Spark初识
一、简介
1、什么是Spark
Apache Spark™是用于大规模数据处理的统一分析引擎。
从右侧最后一条新闻看,Spark也用于AI人工智能
2、为什么要学Spark
中间结果输出:基于MapReduce的计算引擎通常会将中间结果输出到磁盘上,进行存储和容错。出于任务管道承接的,考虑,当一些查询翻译到MapReduce任务时,往往会产生多个Stage,而这些串联的Stage又依赖于底层文件系统(如HDFS)来存储每一个Stage的输出结果。
Spark是MapReduce的替代方案,而且兼容HDFS、Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足。
Spark的四大特性
1、高效性
运行速度提高100倍。
Apache Spark使用最先进的DAG调度程序,查询优化程序和物理执行引擎,实现批量和流式数据的高性能。
2、易用性
Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。
而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。
3、通用性
Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。
这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。
4、兼容性
Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。
Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。
Mesos:Spark可以运行在Mesos里面(Mesos 类似于yarn的一个资源调度框架)
standalone:Spark自己可以给自己分配资源(master,worker)
YARN:Spark可以运行在yarn上面
Kubernetes:Spark接收 Kubernetes的资源调度
三、Spark的组成
Spark组成(BDAS):全称伯克利数据分析栈,通过大规模集成算法、机器、人之间展现大数据应用的一个平台。也是处理大数据、云计算、通信的技术解决方案。
它的主要组件有:
SparkCore:将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度、RPC、序列化和压缩,并为运行在其上的上层组件提供API。
SparkSQL:Spark Sql 是Spark来操作结构化数据的程序包,可以让我使用SQL语句的方式来查询数据,Spark支持 多种数据源,包含Hive表,parquest以及JSON等内容。
SparkStreaming: 是Spark提供的实时数据进行流式计算的组件。
MLlib:提供常用机器学习算法的实现库。
GraphX:提供一个分布式图计算框架,能高效进行图计算。
BlinkDB:用于在海量数据上进行交互式SQL的近似查询引擎。
Tachyon:以内存为中心高容错的的分布式文件系统。
四、应用场景
腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。
优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。
https://www.cnblogs.com/qingyunzong/p/8886338.html
为什么Spark比MapReduce快?
https://www.zhihu.com/question/31930662
Spark计算比MapReduce快的根本原因在于DAG计算模型。一般而言,DAG相比Hadoop的MapReduce在大多数情况下可以减少shuffle次数。
Spark的DAGScheduler相当于一个改进版的MapReduce,如果计算不涉及与其他节点进行数据交换,Spark可以在内存中一次性完成这些操作,也就是中间结果无须落盘,减少了磁盘IO的操作。
但是,如果计算过程中涉及数据交换,Spark也是会把shuffle的数据写磁盘的!!!
另外有同学提到,Spark是基于内存的计算,所以快,这也不是主要原因,要对数据做计算,必然得加载到内存,Hadoop也是如此,只不过Spark支持将需要反复用到的数据给Cache到内存中,减少数据加载耗时,所以Spark跑机器学习算法比较在行(需要对数据进行反复迭代)。Spark基于磁盘的计算依然也是比Hadoop快。
刚刚提到了Spark的DAGScheduler是个改进版的MapReduce,所以Spark天生适合做批处理的任务。而不是某些同学说的:Hadoop更适合做批处理,Spark更适合做需要反复迭代的计算。
Hadoop的MapReduce相比Spark真是没啥优势了。但是他的HDFS还是业界的大数据存储标准。