目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练。
import xml.etree.ElementTree as ET import numpy as np import os import tensorflow as tf from PIL import Image classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] def convert(size, box): dw = 1./size[0] dh = 1./size[1] x = (box[0] + box[1])/2.0 y = (box[2] + box[3])/2.0 w = box[1] - box[0] h = box[3] - box[2] x = x*dw w = w*dw y = y*dh h = h*dh return [x, y, w, h] def convert_annotation(image_id): in_file = open('F:/xml/%s.xml'%(image_id)) tree = ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) bboxes = [] for i, obj in enumerate(root.iter('object')): if i > 29: break difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = convert((w, h), b) + [cls_id] bboxes.extend(bb) if len(bboxes) < 30*5: bboxes = bboxes + [0, 0, 0, 0, 0]*(30-int(len(bboxes)/5)) return np.array(bboxes, dtype=np.float32).flatten().tolist() def convert_img(image_id): image = Image.open('F:/snow leopard/test_im/%s.jpg' % (image_id)) resized_image = image.resize((416, 416), Image.BICUBIC) image_data = np.array(resized_image, dtype='float32')/255 img_raw = image_data.tobytes() return img_raw filename = os.path.join('test'+'.tfrecords') writer = tf.python_io.TFRecordWriter(filename) # image_ids = open('F:/snow leopard/test_im/%s.txt' % ( # year, year, image_set)).read().strip().split() image_ids = os.listdir('F:/snow leopard/test_im/') # print(filename) for image_id in image_ids: print (image_id) image_id = image_id.split('.')[0] print (image_id) xywhc = convert_annotation(image_id) img_raw = convert_img(image_id) example = tf.train.Example(features=tf.train.Features(feature={ 'xywhc': tf.train.Feature(float_list=tf.train.FloatList(value=xywhc)), 'img': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])), })) writer.write(example.SerializeToString()) writer.close()
Python读取文件夹下图片的两种方法:
import os imagelist = os.listdir('./images/') #读取images文件夹下所有文件的名字
import glob imagelist= sorted(glob.glob('./images/' + 'frame_*.png')) #读取带有相同关键字的图片名字,比上一中方法好
参考:
https://blog.csdn.net/CV_YOU/article/details/80778392
https://github.com/raytroop/YOLOv3_tf