随笔分类 - 推荐系统
摘要:什么是召回 召回系统,本质上是个信息漏斗,负责快速从海量信息中筛选出有价值的信息,缩小排序算法的搜素范围(解决了信息过载的问题); 也负责将多路召回的数据,进行融合(相当于一个信息融合器,解决了单路召回特征单一,信息量小,多样性差的问题),得到一个精简的候选集。 怎么衡量一个召回系统的好坏 召回算法
阅读全文
摘要:链接:https://zhuanlan.zhihu.com/p/65577153 推荐看原文:http://tryenough.com/python_install 首先要知道,mac自带一个2.7版本的python,如果你之前没装过其他版本,在终端运行 python --version 就会看到这
阅读全文
摘要:一.互联网广告特征工程 博文《互联网广告综述之点击率系统》论述了互联网广告的点击率系统,可以看到,其中的logistic regression模型是比较简单而且实用的,其训练方法虽然有多种,但目标是一致的,训练结果对效果的影响是比较大,但是训练方法本身,对效果的影响却不是决定性的,因为训练的是每个特
阅读全文
摘要:过去的首页推荐更多的是在相关性推荐的单一数据目标上进行优化,如今天猫首页的推荐系统不仅仅考虑推荐结果的相关性,还在推荐结果的发现性、多样性等方面上做了更深度的优化,"效率和体验并重"成为天猫首页新的优化目标。Graph Embedding、Transformer、深度学习、知识图谱等新的技术已先后在
阅读全文
摘要:本书到目前为止都是在讨论TopN推荐,即给定一个用户,如何给他生成一个长度为N的推荐列表,使该推荐列表能够尽量满足用户的兴趣和需求。 本书之所以如此重视TopN推荐,是因为它非常接近于满足实际系统的需求,实际系统绝大多数情况下就是给用户提供一个包括N个物品的个性化推荐列表。 评分预测问题最基本的数据
阅读全文
摘要:前面几章介绍了各种各样的数据和基于这些数据的推荐算法。在实际系统中,前面几章提到的数据大都存在,因此如何设计一个真实的推荐系统处理不同的数据,根据不同的数据设计算法,并将这些算法融合到一个系统当中是本章讨论的主要问题。本章将首先介绍推荐系统的外围架构,然后介绍推荐系统的架构,并对架构中每个模块的设计
阅读全文
摘要:基于社交网络的推荐可以很好地模拟现实社会。在现实社会中,很多时候我们都是通过朋友获得推荐。 美国著名的第三方调查机构尼尔森调查了影响用户相信某个推荐的因素。调查结果该调查可以看到,好友的推荐对于增加用户对推荐结果的信任度非常重要。 尼尔森测试了同一个品牌的3种不同形式的广告。第一种广告和第二种广告都
阅读全文
摘要:本章之前提到的推荐系统算法主要集中研究了如何联系用户兴趣和物品,将最符合用户兴趣的物品推荐给用户,但这些算法都忽略了一点,就是用户所处的上下文(context)。 这些上下文包括用户访问推荐系统的时间、地点、心情等,对于提高推荐系统的推荐系统是非常重要的。 比如,一个卖衣服的推荐系统在冬天和夏天应该
阅读全文
摘要:荐系统的目的是联系用户的兴趣和物品,这种联系需要依赖不同的媒介。目前流行的推荐系统基本上通过3种方式联系用户兴趣和物品。如图4-1所示, 第一种方式是利用用户喜欢过的物品,给用户推荐与他喜欢过的物品相似的物品,这就是前面提到的基于物品的算法。 第二种方式是利用和用户兴趣相似的其他用户,给用户推荐那些
阅读全文
摘要:推荐系统需要根据用户的历史行为和兴趣预测用户未来的行为和兴趣,因此大量的用户行为数据就成为推荐系统的重要组成部分和先决条件。对于很多像百度、当当这样的网站来说,这或许不是个问题,因为它们目前已经积累了大量的用户数据。但是对于很多做纯粹推荐系统的网站(比如Jinni和Pandora),或者很多在开始阶
阅读全文
摘要:一、用户行为数据 一个用户行为表示为6部分,即产生行为的用户和行为的对象、行为的种类、产生行为的上下文、行为的内容和权重。用户行为的统一表示如下: user id 产生行为的用户的唯一标识item id 产生行为的对象的唯一标识behavior type 行为的种类(比如是购买还是浏览)contex
阅读全文
摘要:推荐系统的主要任务:联系 用户 和 信息,一方面帮助用户发现对自己 有价值的信息,另一方面让信息能够展现在对它感兴趣的用户面前,从而实现信息消费者和信息生产者的双赢。 也就是帮助用户解决 信息过载(information overload)的问题。 搜索引擎和 推荐系统的区别: 和搜索引擎一样,推荐
阅读全文
摘要:在广告领域,预测用户点击率(Click Through Rate,简称CTR)领域近年也有大量关于深度学习方面的研究,仅这两年就出现了不少于二十多种方法 本文就近几年CTR预估领域中学术界的经典方法进行探究, 并比较各自之间模型设计的初衷和各自优缺点。 通过十种不同CTR深度模型的比较,不同的模型本
阅读全文
摘要:什么是FM模型 FM英文全称是“Factorization Machine”,简称FM模型,中文名“因子分解机”。 FM模型其实有些年头了,是2010年由Rendle提出的,但是真正在各大厂大规模在CTR预估和推荐领域广泛使用,其实也就是最近几年的事。 FM模型 原理参考: https://zhua
阅读全文