最短路
dijkstra
Dijkstra求最短路 I
\(O(n^2)\)
单源最短路(Single Source Shortest Path)
题目链接
#include <bits/stdc++.h>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;
int n, m;
int g[N][N], d[N];
bool vis[N];
int dijkstra(int s) {
memset(d, 0x3f, sizeof d);
d[s] = 0;
for (int i = 0; i < n - 1; i++) {
int t = -1;
for (int j = 1; j <= n; j++)
if (!vis[j] && (t == -1 || d[t] > d[j]))
t = j; //如果没被访问过并且是第一次访问i结点或者可优化
for (int j = 1; j <= n; j++)
d[j] = min(d[j], d[t] + g[t][j]);
vis[t] = true;
}
if (d[n] == INF) return -1;
return d[n];
}
int main() {
cin >> n >> m;
memset(g, 0x3f, sizeof g);
while (m--) {
int a, b, c;
cin >> a >> b >> c;
g[a][b] = min(g[a][b], c);
}
cout << dijkstra(1) << endl;
return 0;
}
Dijkstra求最短路 II
\(O(mlogn)\)
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 1e6 + 10, INF = 0x3f3f3f3f;
int n, m;
int h[N], w[N], ne[N], e[N], idx;
int d[N];
bool st[N];
void add(int a, int b, int c) {
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int dijkstra(int s) {
memset(d, 0x3f, sizeof d);
d[s] = 0;
priority_queue<PII, vector<PII>, greater<PII>>heap;
heap.push({0, 1}); //距离,点
while (heap.size()) {
auto t = heap.top();
heap.pop();
int id = t.second, dist = t.first;
if (st[id]) continue;
st[id] = true;
for (int i = h[id]; ~i; i = ne[i]) {
int j = e[i];
if (d[j] > d[id] + w[i]) {
d[j] = d[id] + w[i];
heap.push({d[j], j});
}
}
}
if (d[n] == INF) return -1;
return d[n];
}
int main() {
cin >> n >> m;
memset(h, -1, sizeof h);
while (m--) {
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
cout << dijkstra(1) << endl;
return 0;
}
bellman-ford
\(O(nm)\)
有边数限制的最短路,存在负权回路
题目链接
#include <bits/stdc++.h>
using namespace std;
const int N = 510, M = 1e4 + 10, INF = 0x3f3f3f3f;
struct Edge{
int a, b, c;
}edge[M];
int n, m, k;
int d[N], backup[N];
bool st[N];
void bellman_ford(int s) {
memset(d, 0x3f, sizeof d);
d[s] = 0;
for (int i = 0; i < k; i++) {
memcpy(backup, d, sizeof d);
for (int j = 0; j < m; j++) {
auto e = edge[j];
d[e.b] = min(d[e.b], backup[e.a] + e.c);
}
}
}
int main() {
cin >> n >> m >> k;
for (int i = 0; i < m; i++) {
int a, b, c;
cin >> a >> b >> c;
edge[i] = {a, b, c};
}
bellman_ford(1);
if (d[n] > INF / 2) cout << "impossible" << endl;
else cout << d[n] << endl;
return 0;
}
spfa
spfa求最短路
长方形图会被卡
\(O(m)\) ~ \(O(nm)\)
题目链接
#include <bits/stdc++.h>
using namespace std;
int n, m;
const int N = 1e5 + 10;
int d[N], e[N], h[N], ne[N], w[N], idx;
bool st[N];
void add(int a, int b, int c) {
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int spfa(int s) {
memset(d, 0x3f, sizeof d);
d[s] = 0;
queue<int> q;
q.push(s);
st[s] = true;
while (q.size()) {
int t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; ~i; i = ne[i]) {
int j = e[i];
if (d[j] > d[t] + w[i]) {
d[j] = d[t] + w[i];
if (!st[j]) {
q.push(j);
st[j] = true;
}
}
}
}
return d[n];
}
int main() {
cin >> n >> m;
memset(h, -1, sizeof h);
while (m--) {
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
int t = spfa(1);
if (t == 0x3f3f3f3f) cout << "impossible" << endl;
else cout << t << endl;
return 0;
}
spfa判断负环
\(O(m)\) ~ \(O(nm)\)
题目链接
using namespace std;
const int M = 1e4 + 10, N = 2010;
int d[N], h[N], e[M], ne[M], w[M], idx, cnt[N];
bool st[N];
int n, m;
void add(int a, int b, int c) {
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
bool spfa() {
queue<int> q;
for (int i = 1; i <= n; i++) {
q.push(i);
st[i] = true;
}
while (q.size()) {
int t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; ~i; i = ne[i]) {
int j = e[i];
if (d[j] > d[t] + w[i]) {
d[j] = d[t] + w[i];
cnt[j] = cnt[t] + 1;
if (cnt[j] >= n) return true;
if (!st[j]) {
q.push(j);
st[j] = true;
}
}
}
}
return false;
}
int main() {
memset(h, -1, sizeof h);
cin >> n >> m;
while (m--) {
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
if (spfa()) cout << "Yes" << endl;
else puts("No");
return 0;
}
floyd
\(O(N³)\)
题目链接
#include <bits/stdc++.h>
using namespace std;
const int N = 210, INF = 0x3f3f3f3f;
int n, m, k;
int d[N][N];
void floyd() {
for (int t = 1; t <= n; t++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
d[i][j] = min(d[i][j], d[i][t] + d[t][j]);
}
int main() {
cin >> n >> m >> k;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (i == j) d[i][j] = 0;
else d[i][j] = INF;
while (m--) {
int a, b, c;
cin >> a >> b >> c;
d[a][b] = min(c, d[a][b]);
}
floyd();
while (k--) {
int a, b;
cin >> a >> b;
int t = d[a][b];
if (t > INF / 2) puts("impossible");
else printf("%d\n", t);
}
return 0;
}
区别
- | floyd (弗洛伊德算法) | Dijkstra(迪杰斯特拉算法) | bellman-ford(贝尔曼夫德算法) | spfa |
---|---|---|---|---|
空间复杂度 | O(N²) | O(M) | O(M) | O(M) |
时间复杂度 | O(N³) | O((m+n)logN) | O(MN) | 最坏也是O(NM) |
适用情况 | 稠密图和顶点关系密切 | 稠密图和顶点关系密切 | 稀疏图和边关系密切 | 稀疏图和边关系密切 |
负权 | 可以 | 不能 | 可以 | 可以 |
有负权边时可否处理 | 可以 | 不能 | 可以 | 可以 |
判断是否存在负权回路 | 不能 | 不能 | 可以 | 可以 |