matplotlib基础

Matplotlib 基础

注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt;如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习

一、简单绘图案例

#简单的画图例子
x=np.linspace(0,1,num=200)#横坐标
y1=x**2#纵坐标1
y2=x*3+0.2#纵坐标2
#图片框1
plt.figure(1)
plt.plot(x,y1, label='line1')#绘制曲线
plt.plot(x,y2, linewidth=5, color='coral', linestyle='--', label='line2')#绘制不同风格的曲线
plt.legend()
#图片框2
plt.figure(2)
plt.plot(x,y2)
plt.show()#显示

显示结果:

 

 

 

 

 

 

 

 

 

二、设置坐标轴

#坐标轴设置
x=np.linspace(0,1,num=200)
y1=x**2
#图片框1
plt.figure(1)
plt.plot(x,y1)#绘制曲线
#坐标轴设置
plt.xlim((0,1))#x轴取值范围
plt.ylim((0,1))#y轴取值范围
plt.xlabel('x')#x轴轴标
plt.ylabel('y')#y轴轴标
#x轴ticks设置
new_ticks=np.linspace(0,1,5)
plt.xticks(new_ticks)
#设置绘图坐标轴的位置
axis=plt.gca()#获取当前的坐标轴
axis.spines['left'].set_position(('data',  0.1))#将y轴设置到x轴上为1的位置
axis.spines['bottom'].set_position(('data', 0.5))#将x轴设置到y轴上为1的位置
plt.show()

输出结果:

三、图片标注

#图片标注
x=np.linspace(0,1,num=200)
y1=x**2
plt.figure(1)
plt.plot(x,y1,label='line 1')#绘制曲线,label设置为1
plt.legend()
#设置绘图坐标轴的位置
axis=plt.gca()#获取当前的坐标轴
axis.spines['left'].set_position(('data', 0))#将y轴设置到x轴上为0的位置
axis.spines['bottom'].set_position(('data', 0))#将x轴设置到y轴上为0的位置
#被标注点
x0=0.5
y0=0.5**2
plt.scatter(x0, y0, s=30, color='red')#通过散点图来绘制点
plt.plot([x0,x0],[y0,0], color='black', linestyle='--',linewidth=3)#绘制一条垂直于x轴的虚线
#添加标注
plt.annotate('annotation', [x0+0.1,y0], fontsize=10)#在坐标[x0+0.1,y0]处添加标注
plt.show()

输出结果:

四、设置坐标轴游标字体大小

#操作坐标轴的label
x=np.linspace(0,2,num=200)
y1=x**2
#图片框1
plt.figure(1)
plt.plot(x,y1)#绘制曲线
#坐标轴设置
plt.xlim((0,2))#x轴取值范围
plt.ylim((0,2))#y轴取值范围
ax=plt.gca()#拿到现在的坐标轴
for label in ax.get_xticklabels() +ax.get_yticklabels():
    label.set_fontsize(12)#设置坐标轴label的字体大小
plt.show()

输出结果:

五、绘制散点图

# scatter 散点图
x=np.random.normal(0,1,100)
y=np.random.normal(0,1,100)
plt.scatter(x,y, s=50, c='blue',marker='o',alpha=0.6)
plt.show()

六、柱状图

x=np.arange(0,10, step=1)
y=np.arange(0,10, step=1)
plt.bar(x,y, color='red', width=0.3)
#在每一个柱形图上面添加文字标注
for x0,y0 in zip(x,y): plt.text(x0,y0, '%i'%y0) plt.show()

输出为:

七、等高线图

#等高线图
x=np.linspace(0,10, 100)
y=np.linspace(0,10, 100)
x_m,y_m=np.meshgrid(x,y)#网格化
z=x_m**2+y_m**2
plt.contourf(x_m, y_m, z, 10, alpha=0.5, cmap=plt.cm.hot)#绘制热图,10代表着高度的分级
c=plt.contour(x_m,y_m, z, 10, colors='black', linewidth=11)#绘制等高线
plt.clabel(c, inline=True, fontsize=10)#为等高线添加标注
plt.show()

八、3D绘图

#3D绘图
from mpl_toolkits.mplot3d import Axes3D
x=np.linspace(0,10, 100)
y=np.linspace(-10,10, 100)
x_m,y_m=np.meshgrid(x,y)#网格化
z=x_m**2+y_m**2
fig=plt.figure()
ax=Axes3D(fig)#为figure添加3D坐标轴
ax.plot_surface(x_m, y_m, z,rstride=5, cstride=5, cmap=plt.cm.hot)#绘制3D的表面, rstide为行跨度,cstride为列跨度
ax.contourf(x_m, y_m, z, zdir='z',offset=6)#offset指的是等高线图与xy平面之间的距离, zdir设置投影方向
plt.show()

九、subplot 绘制多个图

#subplot,绘制子图像
x=np.linspace(0,1,100)
y=x**2

plt.figure()
plt.subplot(2, 2,1)#将figure划分为2*2,在编号为1的位置绘图
plt.plot(x,y)

plt.subplot(2, 2,2)#将figure划分为2*2,在编号为2的位置绘图
plt.plot(x,x)

plt.subplot(2, 2,3)#将figure划分为2*2,在编号为3的位置绘图
plt.plot(y,y)

plt.subplot(2, 2,4)#将figure划分为2*2,在编号为4的位置绘图
plt.plot(y,y)

plt.show()

 

posted @ 2019-09-18 16:46  NewRookie  阅读(412)  评论(0编辑  收藏  举报