metrics模块

class sklearn.metrics

方法


1.分类问题的度量

1 metrics.accuracy_score
2 metrics.auc
3 metrics.f1_score
4 metrics.precision_score
5 metrics.recall_score
6 metrics.roc_auc_score
7 ......

2.回归问题的度量
3.概率分布函数的度量
4.检索问题的度量
5.其他
查询地址: 

https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics

  

基于sklearn上聚类可使用的评估指标:

 1 metrics.adjusted_mutual_info_score(…[, …])    
 2 metrics.adjusted_rand_score(labels_true, …)    
 3 metrics.calinski_harabasz_score(X, labels)    
 4 metrics.davies_bouldin_score(X, labels)
 5 metrics.completeness_score(labels_true, …)    
 6 metrics.cluster.contingency_matrix(…[, …])    
 7 metrics.fowlkes_mallows_score(labels_true, …)    
 8 metrics.homogeneity_completeness_v_measure(…)    
 9 metrics.homogeneity_score(labels_true, …)    
10 metrics.mutual_info_score(labels_true, …)    
11 metrics.normalized_mutual_info_score(…[, …])    
12 metrics.silhouette_score(X, labels[, …])    
13 metrics.silhouette_samples(X, labels[, metric])
14 metrics.v_measure_score(labels_true, labels_pred)
#大部分的评估指标都需要labels_true, 一些不需要labels_true指标如下
posted @ 2020-03-03 17:26  Alexisbusy  阅读(477)  评论(0编辑  收藏  举报