Exhaustive Search Aizu - ALDS1_5_A

Write a program which reads a sequence A of n elements and an integer M, and outputs “yes” if you can make M by adding elements in A, otherwise “no”. You can use an element only once.

You are given the sequence A and q questions where each question contains Mi.

Input

In the first line n is given. In the second line, n integers are given. In the third line q is given. Then, in the fourth line, q integers (Mi) are given.

Output

For each question Mi, print yes or no.

Constraints

n ≤ 20
q ≤ 200
1 ≤ elements in A ≤ 2000
1 ≤ Mi ≤ 2000

Sample Input 1

5
1 5 7 10 21
8
2 4 17 8 22 21 100 35

Sample Output 1

no
no
yes
yes
yes
yes
no
no

Notes

You can solve this problem by a Burte Force approach. Suppose solve(p, t) is a function which checkes whether you can make t by selecting elements after p-th element (inclusive). Then you can recursively call the following functions:

solve(0, M)
solve(1, M-{sum created from elements before 1st element})
solve(2, M-{sum created from elements before 2nd element})

The recursive function has two choices: you selected p-th element and not. So, you can check solve(p+1, t-A[p]) and solve(p+1, t) in solve(p, t) to check the all combinations.

For example, the following figure shows that 8 can be made by A[0] + A[2].

在这里插入图片描述

思路

设solve(i,m)为“用第i个元素后面的元素能得出m时返回true”的函数,这样一来solve(i,m)就可以分解为solve(i+1,m)和solve(i,m-A[i])这两个更小的局部问题。

函数solve(i,m)中,m==0时代表数组元素相加能够得出指定整数。相反,m>0且i>=n时表示数组元素相加得不出指定整数。

只要局部问题solve(i+1,m)和solve(i,m-A[i])之中有一个为true,原问题solve(i,m)就为true。

code

/*
                                ^....0
                               ^ .1 ^1^
                               ..     01
                              1.^     1.0
                             ^ 1  ^    ^0.1
                             1 ^        ^..^
                             0.           ^ 0^
                             .0            1 .^
                             .1             ^0 .........001^
                             .1               1. .111100....01^
                             00             ^   11^        ^1. .1^
                             1.^                              ^0  0^
                               .^                                 ^0..1
                               .1                                   1..^
                             1 .0                                     ^  ^
                              00.                                     ^^0.^
                              ^ 0                                     ^^110.^
                          0   0 ^                                     ^^^10.01
                   ^^     10  1 1                                      ^^^1110.1
                   01     10  1.1                                      ^^^1111110
                   010    01  ^^                                        ^^^1111^1.^           ^^^
                   10  10^ 0^ 1                                            ^^111^^^0.1^       1....^
                    11     0                                               ^^11^^^ 0..  ....1^   ^ ^
                    1.     0^                                               ^11^^^ ^ 1 111^     ^ 0.
                   10   00 11                                               ^^^^^   1 0           1.
                   0^  ^0  ^0                                                ^^^^    0            0.
                   0^  1.0  .^                                               ^^^^    1 1          .0
                   ^.^  ^^  0^                             ^1                ^^^^     0.         ^.1
                   1 ^      11                             1.                ^^^     ^ ^        ..^
                  ^..^      ^1                             ^.^               ^^^       .0       ^.0
                  0..^      ^0                              01               ^^^       ..      0..^
                 1 ..        .1                             ^.^              ^^^       1 ^  ^0001
                ^  1.        00                              0.             ^^^        ^.0 ^.1
                . 0^.        ^.^                             ^.^            ^^^         ..0.0
               1 .^^.         .^                  1001        ^^            ^^^         . 1^
               . ^ ^.         11                0.    1         ^           ^^          0.
                0  ^.          0              ^0       1                   ^^^          0.
              0.^  1.          0^             0       .1                   ^^^          ..
              .1   1.          00            .        .1                  ^^^           ..
             1      1.         ^.           0         .^                  ^^            ..
             0.     1.          .^          .         0                                  .
             .1     1.          01          .        .                                 ^ 0
            ^.^     00          ^0          1.       ^                                 1 1
            .0      00           .            ^^^^^^                                   .
            .^      00           01                                                    ..
           1.       00           10                                                   1 ^
          ^.1       00           ^.                                            ^^^    .1
          ..        00            .1                                        1..01    ..
         1.1         00           1.                                       ..^      10
        ^ 1^         00           ^.1                                      0 1      1
        .1           00            00                                       ^  1   ^
         .           00            ^.^                                        10^  ^^
       1.1           00             00                                              10^
       ..^           1.             ^.                                               1.
      0 1            ^.              00                 00                            .^
        ^            ^.              ^ 1                00   ^0000^     ^               01
     1 0             ^.               00.0^              ^00000   1.00.1              11
     . 1              0               1^^0.01                      ^^^                01
      .^              ^                1   1^^                                       ^.^
    1 1                                                                              0.
    ..                                                                              1 ^
     1                                                                               1
   ^ ^                                                                             .0
   1                                                                             ^ 1
   ..                                                          1.1            ^0.0
  ^ 0                                                           1..01^^100000..0^
  1 1                                                            ^ 1 ^^1111^ ^^
  0 ^                                                             ^ 1      1000^
  .1                                                               ^.^     .   00
  ..                                                                1.1    0.   0
  1.                                                                  .    1.   .^
  1.                                                                 1    1.   ^0
 ^ .                                                                 ^.1 00    01
 ^.0                                                                  001.     .^
 */
// Virtual_Judge —— Exhaustive Search Aizu - ALDS1_5_A.cpp created by VB_KoKing on 2019-05-04:12.
/* Procedural objectives:

 Variables required by the program:

 Procedural thinking:

 Functions required by the program:

*/
/* My dear Max said:
"I like you,
So the first bunch of sunshine I saw in the morning is you,
The first gentle breeze that passed through my ear is you,
The first star I see is also you.
The world I see is all your shadow."

FIGHTING FOR OUR FUTURE!!!
*/
#include <iostream>
using namespace std;

int n,A[50];

//从输入值M中减去所选元素的递归函数
int solve(int i,int m)
{
    if (m==0) return 1;
    if (i>=n) return 0;
    return solve(i+1,m)+solve(i+1,m-A[i]);
}

int main()
{
    int q,M;

    cin>>n;
    for (int i = 0; i < n; i++)
        cin>>A[i];
    cin>>q;
    for (int i = 0; i < q; i++) {
        cin>>M;
        if (solve(0,M))
            cout<<"yes"<<endl;
        else
            cout<<"no"<<endl;
    }
    return 0;
}
posted @ 2019-05-04 15:55  AlexKing007  阅读(103)  评论(0编辑  收藏  举报