2016年第七届蓝桥杯C/C++ C组国赛 —— 第二题:反幻方

反幻方

我国古籍很早就记载着

2 9 4
7 5 3
6 1 8

这是一个三阶幻方。每行每列以及对角线上的数字相加都相等。

下面考虑一个相反的问题。
可不可以用 1~9 的数字填入九宫格。
使得:每行每列每个对角线上的数字和都互不相等呢?

这应该能做到。
比如:
9 1 2
8 4 3
7 5 6

你的任务是搜索所有的三阶反幻方。并统计出一共有多少种。
旋转或镜像算同一种。

比如:
9 1 2
8 4 3
7 5 6

7 8 9
5 4 1
6 3 2

2 1 9
3 4 8
6 5 7

等都算作同一种情况。

请提交三阶反幻方一共多少种。这是一个整数,不要填写任何多余内容。

Code

/*
                                ^....0
                               ^ .1 ^1^
                               ..     01
                              1.^     1.0
                             ^ 1  ^    ^0.1
                             1 ^        ^..^
                             0.           ^ 0^
                             .0            1 .^
                             .1             ^0 .........001^
                             .1               1. .111100....01^
                             00                 11^        ^1. .1^
                             1.^                              ^0  0^
                               .^                                 ^0..1
                               .1                                   1..^
                             1 .0                                     ^  ^
                              00.                                     ^^0.^
                              ^ 0                                     ^^110.^
                          0   0 ^                                     ^^^10.01
                   ^^     10  1 1                                      ^^^1110.1
                   01     10  1.1                                      ^^^1111110
                   010    01  ^^                                        ^^^1111^1.^           ^^^
                   10  10^ 0^ 1                                            ^^111^^^0.1^       1....^
                    11     0                                               ^^11^^^ 0..  ....1^   ^ ^
                    1.     0^                                               ^11^^^ ^ 1 111^     ^ 0.
                   10   00 11                                               ^^^^^   1 0           1.
                   0^  ^0  ^0                                                ^^^^    0            0.
                   0^  1.0  .^                                               ^^^^    1 1          .0
                   ^.^  ^^  0^                             ^1                ^^^^     0.         ^.1
                   1 ^      11                             1.                ^^^     ^ ^        ..^
                  ^..^      ^1                             ^.^               ^^^       .0       ^.0
                  0..^      ^0                              01               ^^^       ..      0..^
                 1 ..        .1                             ^.^              ^^^       1 ^  ^0001
                ^  1.        00                              0.             ^^^        ^.0 ^.1
                . 0^.        ^.^                             ^.^            ^^^         ..0.0
               1 .^^.         .^                  1001        ^^            ^^^         . 1^
               . ^ ^.         11                0.    1         ^           ^^          0.
                0  ^.          0              ^0       1                   ^^^          0.
              0.^  1.          0^             0       .1                   ^^^          ..
              .1   1.          00            .        .1                  ^^^           ..
             1      1.         ^.           0         .^                  ^^            ..
             0.     1.          .^          .         0                                  .
             .1     1.          01          .        .                                 ^ 0
            ^.^     00          ^0          1.       ^                                 1 1
            .0      00           .            ^^^^^^                                   .
            .^      00           01                                                    ..
           1.       00           10                                                   1 ^
          ^.1       00           ^.                                            ^^^    .1
          ..        00            .1                                        1..01    ..
         1.1         00           1.                                       ..^      10
        ^ 1^         00           ^.1                                      0 1      1
        .1           00            00                                       ^  1   ^
         .           00            ^.^                                        10^  ^^
       1.1           00             00                                              10^
       ..^           1.             ^.                                               1.
      0 1            ^.              00                 00                            .^
        ^            ^.              ^ 1                00   ^0000^     ^               01
     1 0             ^.               00.0^              ^00000   1.00.1              11
     . 1              0               1^^0.01                      ^^^                01
      .^              ^                1   1^^                                       ^.^
    1 1                                                                              0.
    ..                                                                              1 ^
     1                                                                               1
   ^ ^                                                                             .0
   1                                                                             ^ 1
   ..                                                          1.1            ^0.0
  ^ 0                                                           1..01^^100000..0^
  1 1                                                            ^ 1 ^^1111^ ^^
  0 ^                                                             ^ 1      1000^
  .1                                                               ^.^     .   00
  ..                                                                1.1    0.   0
  1.                                                                  .    1.   .^
  1.                                                                 1    1.   ^0
 ^ .                                                                 ^.1 00    01
 ^.0                                                                  001.     .^
 */
// VB_king —— 2016_Finals_C_C++_2.cpp created by VB_KoKing on 2019-05-13:08.
/* Procedural objectives:

 Variables required by the program:

 Procedural thinking:
 一个反幻方的镜像加旋转总共8次。
 Functions required by the program:
 
 Determination algorithm:
 
 Determining data structure:
 

*/
/* My dear Max said:
"I like you,
So the first bunch of sunshine I saw in the morning is you,
The first gentle breeze that passed through my ear is you,
The first star I see is also you.
The world I see is all your shadow."

FIGHTING FOR OUR FUTURE!!!
*/
#include <algorithm>
#include <iostream>
#include <cstring>
#include <set>

using namespace std;

int num[9],sum[8];

void print(){
    for (int i = 0; i < 9; i++) {
        if (i%3==0) cout<<endl;
        cout<<num[i]<<' ';
    }
}

bool check(){
    memset(sum,0, sizeof(sum));
    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++)
            sum[j]+=num[i+j*3];
        for (int j = 0; j < 3; j++)
            sum[j+3]+=num[3*i+j];
        sum[6]+=num[4*i];
        sum[7]+=num[2*(i+1)];
    }
    set <int> s;
    for (int i = 0; i < 8; i++)
        s.insert(sum[i]);
    if (s.size()==8) return true;
    return false;
}

int main(){
    int ans=0;
    for (int i = 1; i < 10; i++)
        num[i-1]=i;
    do {
        if (check()){
//            print();
            ans++;
//            cout<<endl;
        }
    }while (next_permutation(num,num+9));
    cout<<endl<<ans/8<<endl;
    return 0;
}
posted @ 2019-05-13 10:22  AlexKing007  阅读(139)  评论(0编辑  收藏  举报