2016年第七届蓝桥杯C/C++ A组国赛 —— 第四题:路径之谜

路径之谜

小明冒充X星球的骑士,进入了一个奇怪的城堡。
城堡里边什么都没有,只有方形石头铺成的地面。

假设城堡地面是 n x n 个方格。【如图1.png】所示。
在这里插入图片描述
按习俗,骑士要从西北角走到东南角。
可以横向或纵向移动,但不能斜着走,也不能跳跃。
每走到一个新方格,就要向正北方和正西方各射一箭。
(城堡的西墙和北墙内各有 n 个靶子)

同一个方格只允许经过一次。但不必走完所有的方格。

如果只给出靶子上箭的数目,你能推断出骑士的行走路线吗?

有时是可以的,比如图1.png中的例子。

本题的要求就是已知箭靶数字,求骑士的行走路径(测试数据保证路径唯一)

输入:

第一行一个整数N(0<N<20),表示地面有 N x N 个方格
第二行N个整数,空格分开,表示北边的箭靶上的数字(自西向东)
第三行N个整数,空格分开,表示西边的箭靶上的数字(自北向南)

输出:

一行若干个整数,表示骑士路径。

为了方便表示,我们约定每个小格子用一个数字代表,从西北角开始编号: 0,1,2,3…
比如,图1.png中的方块编号为:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

示例:

用户输入:
4
2 4 3 4
4 3 3 3

程序应该输出:
0 4 5 1 2 3 7 11 10 9 13 14 15

资源约定:

峰值内存消耗 < 256M
CPU消耗 < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。

提交时,注意选择所期望的编译器类型。

Code

/*
                                ^....0
                               ^ .1 ^1^
                               ..     01
                              1.^     1.0
                             ^ 1  ^    ^0.1
                             1 ^        ^..^
                             0.           ^ 0^
                             .0            1 .^
                             .1             ^0 .........001^
                             .1               1. .111100....01^
                             00                 11^        ^1. .1^
                             1.^                              ^0  0^
                               .^                                 ^0..1
                               .1                                   1..^
                             1 .0                                     ^  ^
                              00.                                     ^^0.^
                              ^ 0                                     ^^110.^
                          0   0 ^                                     ^^^10.01
                   ^^     10  1 1                                      ^^^1110.1
                   01     10  1.1                                      ^^^1111110
                   010    01  ^^                                        ^^^1111^1.^           ^^^
                   10  10^ 0^ 1                                            ^^111^^^0.1^       1....^
                    11     0                                               ^^11^^^ 0..  ....1^   ^ ^
                    1.     0^                                               ^11^^^ ^ 1 111^     ^ 0.
                   10   00 11                                               ^^^^^   1 0           1.
                   0^  ^0  ^0                                                ^^^^    0            0.
                   0^  1.0  .^                                               ^^^^    1 1          .0
                   ^.^  ^^  0^                             ^1                ^^^^     0.         ^.1
                   1 ^      11                             1.                ^^^     ^ ^        ..^
                  ^..^      ^1                             ^.^               ^^^       .0       ^.0
                  0..^      ^0                              01               ^^^       ..      0..^
                 1 ..        .1                             ^.^              ^^^       1 ^  ^0001
                ^  1.        00                              0.             ^^^        ^.0 ^.1
                . 0^.        ^.^                             ^.^            ^^^         ..0.0
               1 .^^.         .^                  1001        ^^            ^^^         . 1^
               . ^ ^.         11                0.    1         ^           ^^          0.
                0  ^.          0              ^0       1                   ^^^          0.
              0.^  1.          0^             0       .1                   ^^^          ..
              .1   1.          00            .        .1                  ^^^           ..
             1      1.         ^.           0         .^                  ^^            ..
             0.     1.          .^          .         0                                  .
             .1     1.          01          .        .                                 ^ 0
            ^.^     00          ^0          1.       ^                                 1 1
            .0      00           .            ^^^^^^                                   .
            .^      00           01                                                    ..
           1.       00           10                                                   1 ^
          ^.1       00           ^.                                            ^^^    .1
          ..        00            .1                                        1..01    ..
         1.1         00           1.                                       ..^      10
        ^ 1^         00           ^.1                                      0 1      1
        .1           00            00                                       ^  1   ^
         .           00            ^.^                                        10^  ^^
       1.1           00             00                                              10^
       ..^           1.             ^.                                               1.
      0 1            ^.              00                 00                            .^
        ^            ^.              ^ 1                00   ^0000^     ^               01
     1 0             ^.               00.0^              ^00000   1.00.1              11
     . 1              0               1^^0.01                      ^^^                01
      .^              ^                1   1^^                                       ^.^
    1 1                                                                              0.
    ..                                                                              1 ^
     1                                                                               1
   ^ ^                                                                             .0
   1                                                                             ^ 1
   ..                                                          1.1            ^0.0
  ^ 0                                                           1..01^^100000..0^
  1 1                                                            ^ 1 ^^1111^ ^^
  0 ^                                                             ^ 1      1000^
  .1                                                               ^.^     .   00
  ..                                                                1.1    0.   0
  1.                                                                  .    1.   .^
  1.                                                                 1    1.   ^0
 ^ .                                                                 ^.1 00    01
 ^.0                                                                  001.     .^
 */
// VB_king —— 2016_Finals_A_C++_4.cpp created by VB_KoKing on 2019-05-16:09.
/* Procedural objectives:

 Variables required by the program:

 Procedural thinking:

 Functions required by the program:
 
 Determination algorithm:
 
 Determining data structure:
 

*/
/* My dear Max said:
"I like you,
So the first bunch of sunshine I saw in the morning is you,
The first gentle breeze that passed through my ear is you,
The first star I see is also you.
The world I see is all your shadow."

FIGHTING FOR OUR FUTURE!!!
*/
#include <iostream>
#include <vector>

using namespace std;

struct Node {
    bool flag;
    int x, y;
};

Node map[20][20];
vector<int> road;
int N, X[20], Y[20], sum;
int dir[4][2] = {{0, 1},
                 {1, 0},
                 {-1, 0},
                 {0, -1}};

bool dfs(int x, int y) {
    if (x == N - 1 && y == N - 1) {
        for (int i = 0; i < N; i++) {
            if (X[i] || Y[i] || sum)
                return false;
            road.push_back(x * N + y);
            return true;
        }
    }

    road.push_back(x * N + y);
    map[x][y].flag = true;
    for (int i = 0; i < 4; i++) {
        int tx = x + dir[i][0];
        int ty = y + dir[i][1];
        if (tx < 0 || tx > (N - 1) || ty < 0 || ty > (N - 1))
            continue;
        if (!map[tx][ty].flag && (X[tx] > 0 && Y[ty] > 0)) {
            X[tx]--;Y[ty]--;sum -= 2;
            if (dfs(tx, ty))
                return true;
            else {
                X[tx]++;
                Y[ty]++;
                sum += 2;
            }
        }
    }
    map[x][y].flag = false;
    road.erase(road.begin() + road.size() - 1);
    return false;
}

int main() {
    cin >> N;
    for (int i = 0; i < N; i++){
        cin >> Y[i];
        sum += Y[i];
    }
    for (int i = 0; i < N; i++) {
        cin >> X[i];
        sum += X[i];
    }
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            map[i][j].flag = false;
            map[i][j].x = i;
            map[i][j].y = j;
        }
    }
    X[0]--;Y[0]--;sum -= 2;
    dfs(0, 0);
    for (int i = 0; i < road.size(); i++)
        cout << road[i] << ' ';
    return 0;
}
posted @ 2019-05-18 14:23  AlexKing007  阅读(254)  评论(0编辑  收藏  举报