2017年第八届蓝桥杯C/C++ C组国赛 —— 第四题:小数第n位
标题: 小数第n位
我们知道,整数做除法时,有时得到有限小数,有时得到无限循环小数。
如果我们把有限小数的末尾加上无限多个0,它们就有了统一的形式。
本题的任务是:在上面的约定下,求整数除法小数点后的第n位开始的3位数。
输入:
一行三个整数:a b n,用空格分开。a是被除数,b是除数,n是所求的小数后位置(0<a,b,n<1000000000)
输出:
一行3位数字,表示:a除以b,小数后第n位开始的3位数字。
比如:
输入:
1 8 1
程序应该输出:
125
再比如:
输入:
1 8 3
程序应该输出:
500
再比如:
输入:
282866 999000 6
程序应该输出:
914
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
笨笨有话说:
这个除法小学就会算啊,模拟手算除法的过程就可以了吧。
只是数有点大啊…
管它呢,能算多远算多远…
歪歪有话说:
如果我能确定循环节从哪里开始到哪里结束,再大的数不过就是与它取模的余数等价啊
Code
/*
^....0
^ .1 ^1^
.. 01
1.^ 1.0
^ 1 ^ ^0.1
1 ^ ^..^
0. ^ 0^
.0 1 .^
.1 ^0 .........001^
.1 1. .111100....01^
00 11^ ^1. .1^
1.^ ^0 0^
.^ ^0..1
.1 1..^
1 .0 ^ ^
00. ^^0.^
^ 0 ^^110.^
0 0 ^ ^^^10.01
^^ 10 1 1 ^^^1110.1
01 10 1.1 ^^^1111110
010 01 ^^ ^^^1111^1.^ ^^^
10 10^ 0^ 1 ^^111^^^0.1^ 1....^
11 0 ^^11^^^ 0.. ....1^ ^ ^
1. 0^ ^11^^^ ^ 1 111^ ^ 0.
10 00 11 ^^^^^ 1 0 1.
0^ ^0 ^0 ^^^^ 0 0.
0^ 1.0 .^ ^^^^ 1 1 .0
^.^ ^^ 0^ ^1 ^^^^ 0. ^.1
1 ^ 11 1. ^^^ ^ ^ ..^
^..^ ^1 ^.^ ^^^ .0 ^.0
0..^ ^0 01 ^^^ .. 0..^
1 .. .1 ^.^ ^^^ 1 ^ ^0001
^ 1. 00 0. ^^^ ^.0 ^.1
. 0^. ^.^ ^.^ ^^^ ..0.0
1 .^^. .^ 1001 ^^ ^^^ . 1^
. ^ ^. 11 0. 1 ^ ^^ 0.
0 ^. 0 ^0 1 ^^^ 0.
0.^ 1. 0^ 0 .1 ^^^ ..
.1 1. 00 . .1 ^^^ ..
1 1. ^. 0 .^ ^^ ..
0. 1. .^ . 0 .
.1 1. 01 . . ^ 0
^.^ 00 ^0 1. ^ 1 1
.0 00 . ^^^^^^ .
.^ 00 01 ..
1. 00 10 1 ^
^.1 00 ^. ^^^ .1
.. 00 .1 1..01 ..
1.1 00 1. ..^ 10
^ 1^ 00 ^.1 0 1 1
.1 00 00 ^ 1 ^
. 00 ^.^ 10^ ^^
1.1 00 00 10^
..^ 1. ^. 1.
0 1 ^. 00 00 .^
^ ^. ^ 1 00 ^0000^ ^ 01
1 0 ^. 00.0^ ^00000 1.00.1 11
. 1 0 1^^0.01 ^^^ 01
.^ ^ 1 1^^ ^.^
1 1 0.
.. 1 ^
1 1
^ ^ .0
1 ^ 1
.. 1.1 ^0.0
^ 0 1..01^^100000..0^
1 1 ^ 1 ^^1111^ ^^
0 ^ ^ 1 1000^
.1 ^.^ . 00
.. 1.1 0. 0
1. . 1. .^
1. 1 1. ^0
^ . ^.1 00 01
^.0 001. .^
*/
/* Procedural objectives:
Variables required by the program:
Procedural thinking:
题目要求第n位的后三位,只要把它变成整数再%1000就OK了,
其实也不一定非要全部变成整数,并且对于循环小数也是不可能变成整数的,
只需要把n+2之前变成整数,%1000就OK了。
(a/b)*pow(10,n+2)%1000
由公式:x/d%m=x%(d*m)/d
a*pow(10,n+2)%(b*1000)/b
Functions required by the program:
Determination algorithm:
Determining data structure:
*/
/* My dear Max said:
"I like you,
So the first bunch of sunshine I saw in the morning is you,
The first gentle breeze that passed through my ear is you,
The first star I see is also you.
The world I see is all your shadow."
FIGHTING FOR OUR FUTURE!!!
*/
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
long long a,b,n;
long long Q_pow(long long a,long long b,long long mod){
long long res=1;
while(b){
if(b&1) res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res;
}
int main(){
cin>>a>>b>>n;
long long mod=b*1000;
long long res=Q_pow(10,n+2,mod);
long long temp=(a%mod*res%mod)%mod;
printf("%03d\n",temp/b);
return 0;
}