数据库开发——MySQL——慢查询优化

一、正确使用索引

1.索引未命中

并不是说我们创建了索引就一定会加快查询速度,若想利用索引达到预想的提高查询速度的效果,我们在添加索引时,必须遵循以下问题

范围问题,或者说条件不明确,条件中出现这些符号或关键字:>、>=、<、<=、!= 、between…and…、like、

在这里插入图片描述

不等于!=
在这里插入图片描述

between …and…

在这里插入图片描述

like

在这里插入图片描述

2 尽量选择区分度高的列作为索引

区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0。

那可能有人会问,这个比例有什么经验值吗?

使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录

在这里插入图片描述

我们编写存储过程为表s1批量添加记录,name字段的值均为egon,也就是说name这个字段的区分度很低(gender字段也是一样的,我们稍后再搭理它)

回忆b+树的结构,查询的速度与树的高度成反比,要想将树的高低控制的很低,需要保证:在某一层内数据项均是按照从左到右,从小到大的顺序依次排开,即左1<左2<左3<…

而对于区分度低的字段,无法找到大小关系,因为值都是相等的,毫无疑问,还想要用b+树存放这些等值的数据,只能增加树的高度,字段的区分度越低,则树的高度越高。

极端的情况,索引字段的值都一样,那么b+树几乎成了一根棍。

本例中就是这种极端的情况,name字段所有的值均为’egon’

#现在我们得出一个结论:为区分度低的字段建立索引,索引树的高度会很高,然而这具体会带来什么影响呢???

3 =和in可以乱序

比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式

4 索引列不能参与计算,保持列“干净”

比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。

所以语句应该写成create_time = unix_timestamp(’2014-05-29’)

在这里插入图片描述

5 and/or

and与or的逻辑

条件1 and 条件2:所有条件都成立才算成立,但凡要有一个条件不成立则最终结果不成立
条件1 or 条件2:只要有一个条件成立则最终结果就成立

and的工作原理

条件:
    a = 10 and b = 'xxx' and c > 3 and d =4
索引:
    制作联合索引(d,a,b,c)
工作原理:
    对于连续多个and:mysql会按照联合索引,从左到右的顺序找一个区分度高的索引字段(这样便可以快速锁定很小的范围),加速查询,即按照d—>a->b->c的顺序

or的工作原理

条件:
    a = 10 or b = 'xxx' or c > 3 or d =4
索引:
    制作联合索引(d,a,b,c)

工作原理:
    对于连续多个or:mysql会按照条件的顺序,从左到右依次判断,即a->b->c->d

6 最左前缀匹配原则

非常重要的原则,对于组合索引mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配(指的是范围大了,有索引速度也慢),比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

7 其他情况

- 使用函数
    select * from tb1 where reverse(email) = 'egon';

- 类型不一致
    如果列是字符串类型,传入条件是必须用引号引起来,不然...
    select * from tb1 where email = 999;

#排序条件为索引,则select字段必须也是索引字段,否则无法命中
- order by
    select name from s1 order by email desc;
    当根据索引排序时候,select查询的字段如果不是索引,则速度仍然很慢
    select email from s1 order by email desc;
    特别的:如果对主键排序,则还是速度很快:
        select * from tb1 order by nid desc;

- 组合索引最左前缀
    如果组合索引为:(name,email)
    name and email       -- 命中索引
    name                 -- 命中索引
    email                -- 未命中索引


- count(1)或count(列)代替count(*)在mysql中没有差别了

- create index xxxx  on tb(title(19)) #text类型,必须制定长度

二、联合索引与覆盖索引

1、联合索引

联合索引时指对表上的多个列合起来做一个索引。

联合索引的创建方法与单个索引的创建方法一样,不同之处在仅在于有多个索引列,如下

mysql> create table t(
    -> a int,
    -> b int,
    -> primary key(a),
    -> key idx_a_b(a,b)
    -> );
Query OK, 0 rows affected (0.11 sec)

在这里插入图片描述
那么何时需要使用联合索引呢?

在讨论这个问题之前,先来看一下联合索引内部的结果。

从本质上来说,联合索引就是一棵B+树,不同的是联合索引的键值得数量不是1,而是>=2。

接着来讨论两个整型列组成的联合索引,假定两个键值得名称分别为a、b如图

可以看到这与我们之前看到的单个键的B+树并没有什么不同,键值都是排序的,通过叶子结点可以逻辑上顺序地读出所有数据,就上面的例子来说,即(1,1),(1,2),(2,1),(2,4),(3,1),(3,2),数据按(a,b)的顺序进行了存放。

2、覆盖索引

InnoDB存储引擎支持覆盖索引(covering index,或称索引覆盖),即从辅助索引中就可以得到查询记录,而不需要查询聚集索引中的记录。

使用覆盖索引的一个好处是:辅助索引不包含整行记录的所有信息,故其大小要远小于聚集索引,因此可以减少大量的IO操作。

注意:覆盖索引技术最早是在InnoDB Plugin中完成并实现,这意味着对于InnoDB版本小于1.0的,或者MySQL数据库版本为5.0以下的,InnoDB存储引擎不支持覆盖索引特性。

三、查询优化神器-explain

explain命令是查看查询优化器如何决定执行查询的主要方法。

四、慢查询优化的基本步骤

0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE

1.where条件单表查,锁定最小返回记录表。

这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高

2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)

3.order by limit 形式的sql语句让排序的表优先查

4.了解业务方使用场景

5.加索引时参照建索引的几大原则

6.观察结果,不符合预期继续从0分析

posted @ 2020-02-19 12:12  AlexKing007  阅读(139)  评论(0编辑  收藏  举报