Levenshtein distance算法:计算两个字符串的差异
两字符串相似度计算方法有好多,现对基于编距的算法的相似度计算自己总结下。
简单介绍下Levenshtein Distance(LD):LD 可能衡量两字符串的相似性。它们的距离就是一个字符串转换成那一个字符串过程中的添加、删除、修改数值。
举例:
如果str1="test",str2="test",那么LD(str1,str2) = 0。没有经过转换。
如果str1="test",str2="tent",那么LD(str1,str2) = 1。str1的"s"转换"n",转换了一个字符,所以是1。
如果它们的距离越大,说明它们越是不同。
Levenshtein distance最先是由俄国科学家Vladimir Levenshtein在1965年发明,用他的名字命名。不会拼读,可以叫它edit distance(编辑距离)。
Levenshtein distance可以用来:
Spell checking(拼写检查)
Speech recognition(语句识别)
DNA analysis(DNA分析)
Plagiarism detection(抄袭检测)
LD用m*n的矩阵存储距离值。算法大概过程:
str1或str2的长度为0返回另一个字符串的长度。
初始化(n+1)*(m+1)的矩阵d,并让第一行和列的值从0开始增长。
扫描两字符串(n*m级的),如果:str1[i] == str2[j],用temp记录它,为0。否则temp记为1。然后在矩阵d[i][j]赋于d[i-1][j]+1 、d[i][j-1]+1、d[i-1][j-1]+temp三者的最小值。
扫描完后,返回矩阵的最后一个值即d[n][m]
最后返回的是它们的距离。怎么根据这个距离求出相似度呢?因为它们的最大距离就是两字符串长度的最大值。对字符串不是很敏感。现我把相似度计算公式定为1-它们的距离/字符串长度最大值。
{
if (string.IsNullOrEmpty(a))
{
if (!string.IsNullOrEmpty(b))
{
return b.Length;
}
return 0;
}
if (string.IsNullOrEmpty(b))
{
if (!string.IsNullOrEmpty(a))
{
return a.Length;
}
return 0;
}
Int32 cost;
Int32[,] d = new int[a.Length + 1, b.Length + 1];
Int32 min1;
Int32 min2;
Int32 min3;
for (Int32 i = 0; i <= d.GetUpperBound(0); i += 1)
{
d[i, 0] = i;
}
for (Int32 i = 0; i <= d.GetUpperBound(1); i += 1)
{
d[0, i] = i;
}
for (Int32 i = 1; i <= d.GetUpperBound(0); i += 1)
{
for (Int32 j = 1; j <= d.GetUpperBound(1); j += 1)
{
cost = Convert.ToInt32(!(a[i-1] == b[j - 1]));
min1 = d[i - 1, j] + 1;
min2 = d[i, j - 1] + 1;
min3 = d[i - 1, j - 1] + cost;
d[i, j] = Math.Min(Math.Min(min1, min2), min3);
}
}
return d[d.GetUpperBound(0), d.GetUpperBound(1)];
}