[bzoj3620][2014湖北省队互测week2]似乎在梦中见过的样子

Description

已知一个字符串\(S\),求它有多少个形如\(A+B+A\)的子串\((len(A)\;\geq\;k,len(B)\;\geq\;1)\)

Input

第一行一个字符串,第二行一个数\(k\)

Output

仅一行一个数,表示满足条件的子串数。

Sample Input

aaaaa
1

Sample Output

6

HINT

\(n\;\leq\;15000,k\;\leq\;100\),且字符集为所有小写字母。

Solution

这道题时限\(15s\),明显\(O(n^2)\)可以过。那么如果枚举某一端形成新的子串,用\(kmp\)的思想去处理的话,就可以过了。

那具体要如何处理这个子串呢?假设我们枚举左端点\(l,s\)长度为\(r\),则形成的新子串为\(s[l...r]\)

由题意我们可以知道,如果\(s[l...i]=s[j-i+l...j]\)\((i-l+1)\;\geq\;k\)\(l-1+(i-l+1)×2+1\;\leq\;j\),那么\(s[l...j]\)就是一个满足条件的子串,那么这道题就明显和\(Noi2014\)动物园很像了。

如果直接暴力用\(next[\;]\)找满足条件的前缀,实现会变成\(O(n^3)\)

所以这个地方得继续用\(kmp\)的思想:当发现现在的\(i\)不满足条件时,可以用\(next[\;]\)向前寻找满足条件的\(i\)

这样的话,每次都是从满足\((j-1)\)的条件的\(i\)开始寻找,于是时间复杂度就压到了\(O(n^2)\)

#include<set> 
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 15002
using namespace std;
int next[N],n,k,ans;
char a[N];
inline void get_next(char a[]){
    for(int i=2,j=0;a[i];i++){
        while(j&&a[i]!=a[j+1]) j=next[j];
        j+=(a[i]==a[j+1]);
        next[i]=j;
    }
    for(int i=2,j=0;a[i];i++){
        while(j&&a[i]!=a[j+1]) j=next[j];
        j+=(a[i]==a[j+1]);
        while(j&&j*2>=i) j=next[j];
        if(j>=k) ans++;
    }
}
inline void init(){
    scanf("%s%d",a+1,&k);
    n=strlen(a+1);n-=(k<<1);
    for(int i=0;i<n;i++)
        get_next(a+i);
    printf("%d",ans);
}
int main(){
    freopen("dream.in","r",stdin);
    freopen("dream.out","w",stdout);
    init();
    fclose(stdin);
    fclose(stdout);
    return 0;
}
posted @ 2016-07-08 16:53  Aireen_Ye  阅读(422)  评论(0编辑  收藏  举报
底部 顶部 留言板 归档 标签
Der Erfolg kommt nicht zu dir, du musst auf den Erfolg zugehen.