【C#】三维立体验证码 (3DCaptcha)

本技术来源:

3DCaptcha http://www-personal.umich.edu/~mressl/3dcaptcha/

下载地址 http://code.google.com/p/3dcaptcha/

官方LOGO

image

 

本例完全由此样例程序翻译而来,未作任何附加处理.

以下是C#对此算法的实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
 * 3DCaptcha for .net
 *
 * http://www-personal.umich.edu/~mressl/3dcaptcha/     (php)
 *
 * Translate :  Aimeast
 * Blog      :  http://www.cnblogs.com/Aimeast/
 */
 
using System;
using System.Drawing;
 
namespace Captcha
{
    public static class Captcha
    {
        private static double[] addVector(double[] a, double[] b)
        {
            return new double[] { a[0] + b[0], a[1] + b[1], a[2] + b[2] };
        }
 
        private static double[] scalarProduct(double[] vector, double scalar)
        {
            return new double[] { vector[0] * scalar, vector[1] * scalar, vector[2] * scalar };
        }
 
        private static double dotProduct(double[] a, double[] b)
        {
            return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
        }
 
        private static double norm(double[] vector)
        {
            return Math.Sqrt(dotProduct(vector, vector));
        }
 
        private static double[] normalize(double[] vector)
        {
            return scalarProduct(vector, 1.0 / norm(vector));
        }
 
        private static double[] crossProduct(double[] a, double[] b)
        {
            return new double[] {
                (a[1] * b[2] - a[2] * b[1]),
                (a[2] * b[0] - a[0] * b[2]),
                (a[0] * b[1] - a[1] * b[0])
            };
        }
 
        private static double[] vectorProductIndexed(double[] v, double[] m, int i)
        {
            return new double[]{
                v[i + 0] * m[0] + v[i + 1] * m[4] + v[i + 2] * m[8] + v[i + 3] * m[12],
                v[i + 0] * m[1] + v[i + 1] * m[5] + v[i + 2] * m[9] + v[i + 3] * m[13],
                v[i + 0] * m[2] + v[i + 1] * m[6] + v[i + 2] * m[10]+ v[i + 3] * m[14],
                v[i + 0] * m[3] + v[i + 1] * m[7] + v[i + 2] * m[11]+ v[i + 3] * m[15]
            };
        }
 
        private static double[] vectorProduct(double[] v, double[] m)
        {
            return vectorProductIndexed(v, m, 0);
        }
 
        private static double[] matrixProduct(double[] a, double[] b)
        {
            double[] o1 = vectorProductIndexed(a, b, 0);
            double[] o2 = vectorProductIndexed(a, b, 4);
            double[] o3 = vectorProductIndexed(a, b, 8);
            double[] o4 = vectorProductIndexed(a, b, 12);
 
            return new double[]{
                o1[0], o1[1], o1[2], o1[3],
                o2[0], o2[1], o2[2], o2[3],
                o3[0], o3[1], o3[2], o3[3],
                o4[0], o4[1], o4[2], o4[3]
            };
        }
 
        private static double[] cameraTransform(double[] C, double[] A)
        {
            double[] w = normalize(addVector(C, scalarProduct(A, -1)));
            double[] y = new double[] { 0, 1, 0 };
            double[] u = normalize(crossProduct(y, w));
            double[] v = crossProduct(w, u);
            double[] t = scalarProduct(C, -1);
 
            return new double[]{
                u[0], v[0], w[0], 0,
                u[1], v[1], w[1], 0,
                u[2], v[2], w[2], 0,
                dotProduct(u, t), dotProduct(v, t), dotProduct(w, t), 1
            };
        }
 
        private static double[] viewingTransform(double fov, double n, double f)
        {
            fov *= (Math.PI / 180);
            double cot = 1.0 / Math.Tan(fov / 2);
 
            return new double[]{
                cot,    0,        0,        0,
                0,        cot,    0,        0,
                0,        0,        (f + n) / (f - n),        -1,
                0,        0,        2 * f * n / (f - n),    0
            };
        }
 
        public static Image Generate(string captchaText)
        {
            Random rnd = new Random();
 
            // 3dcha parameters
            int fontsize = 24;
            Font font = new Font("Arial", fontsize);
 
            SizeF sizeF;
            using (Graphics g = Graphics.FromImage(new Bitmap(1, 1)))
            {
                sizeF = g.MeasureString(captchaText, font, 0, StringFormat.GenericDefault);
            }
 
            int image2d_x = (int)sizeF.Width;
            int image2d_y = (int)(fontsize * 1.3);
 
            double bevel = 4;
 
            // Create 2d image
            Bitmap image2d = new Bitmap(image2d_x, image2d_y);
            Color black = Color.Black;
            Color white = Color.White;
 
            // Paint 2d image
            using (Graphics g = Graphics.FromImage(image2d))
            {
                g.Clear(black);
                g.DrawString(captchaText, font, Brushes.White, 0, 0);
            }
            // Calculate projection matrix
            double[] T = cameraTransform(
                   new double[] { rnd.Next(-90, 90), -200, rnd.Next(150, 250) },
                   new double[] { 0, 0, 0 }
                );
            T = matrixProduct(
                    T,
                    viewingTransform(60, 300, 3000)
                );
 
            // Calculate coordinates
            double[][] coord = new double[image2d_x * image2d_y][];
 
            int count = 0;
            for (int y = 0; y < image2d_y; y += 2)
            {
                for (int x = 0; x < image2d_x; x++)
                {
                    // calculate x1, y1, x2, y2
                    int xc = x - image2d_x / 2;
                    int zc = y - image2d_y / 2;
                    double yc = -(double)(image2d.GetPixel(x, y).ToArgb() & 0xff) / 256 * bevel;
                    double[] xyz = new double[] { xc, yc, zc, 1 };
                    xyz = vectorProduct(xyz, T);
 
                    coord[count] = xyz;
                    count++;
                }
            }
 
            // Create 3d image
            int image3d_x = 256;
            //$image3d_y = $image3d_x / 1.618;
            int image3d_y = image3d_x * 9 / 16;
            Bitmap image3d = new Bitmap(image3d_x, image3d_y);
            Color fgcolor = Color.White;
            Color bgcolor = Color.Black;
            using (Graphics g = Graphics.FromImage(image3d))
            {
                g.Clear(bgcolor);
                count = 0;
                double scale = 1.75 - (double)image2d_x / 400;
                for (int y = 0; y < image2d_y; y += 2)
                {
                    for (int x = 0; x < image2d_x; x++)
                    {
                        if (x > 0)
                        {
                            double x0 = coord[count - 1][0] * scale + image3d_x / 2;
                            double y0 = coord[count - 1][1] * scale + image3d_y / 2;
                            double x1 = coord[count][0] * scale + image3d_x / 2;
                            double y1 = coord[count][1] * scale + image3d_y / 2;
                            g.DrawLine(new Pen(fgcolor), (float)x0, (float)y0, (float)x1, (float)y1);
                        }
                        count++;
                    }
                }
            }
            return image3d;
        }
    }
}

使用方法

1
this.BackgroundImage = Captcha.Generate("Code");

效果截图

image

posted @   Aimeast  阅读(7669)  评论(17编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示