第三周 1.31-2.6
1.31
HDU 5617 Jam's maze
不会dp。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 using namespace std; 5 const int mod = 5201314; 6 int dp[555][555], cpy[555][555]; 7 char G[555][555]; 8 9 int main(void) 10 { 11 int T; 12 scanf("%d", &T); 13 while(T--) 14 { 15 int N; 16 scanf("%d", &N); 17 for(int i = 0; i < N; i++) scanf("%s", G[i]); 18 memset(dp, 0, sizeof(dp)); 19 dp[0][N-1] = G[0][0] == G[N-1][N-1]; 20 for(int k = 1; k < N; k++) 21 { 22 memcpy(cpy, dp, sizeof(cpy)); 23 memset(dp, 0, sizeof(dp)); 24 for(int x1 = 0; x1 <= k; x1++) 25 { 26 for(int x2 = N - 1; x2 >= N - k - 1; x2--) 27 { 28 int y1 = k - x1, y2 = 2 * N - 2 - k - x2; 29 if(G[x1][y1] == G[x2][y2]) 30 { 31 if(x1 != k && x2 != N - 1 - k) dp[x1][x2] += cpy[x1][x2]; 32 if(x1 != k && x2 != N - 1) dp[x1][x2] += cpy[x1][x2+1]; 33 if(x1 != 0 && x2 != N - 1 - k) dp[x1][x2] += cpy[x1-1][x2]; 34 if(x1 != 0 && x2 != N - 1) dp[x1][x2] += cpy[x1-1][x2+1]; 35 dp[x1][x2] %= mod; 36 } 37 } 38 } 39 } 40 int ans = 0; 41 for(int i = 0; i < N; i++) ans = ( ans + dp[i][i] ) % mod; 42 printf("%d\n", ans); 43 } 44 return 0; 45 }
2.1
什么都没干。
2.2
CF 621 D Rat Kwesh and Cheese
精度之迷。
#include <iostream> #include <cstdio> #include <cmath> using namespace std; long double x, y, z; char * s[] = { "", "x^y^z", "x^z^y", "(x^y)^z", "(x^z)^y", "y^x^z", "y^z^x", "(y^x)^z", "(y^z)^x", "z^x^y", "z^y^x", "(z^x)^y", "(z^y)^x" }; long double f(int op) { if(x < 1.001 && y < 1.001 && z < 1.001) { if(op == 1) return pow(y, z) * log(x); if(op == 2) return pow(z, y) * log(x); if(op == 3) return z * y * log(x); if(op == 5) return pow(x, z) * log(y); if(op == 6) return pow(z, x) * log(y); if(op == 7) return x * z * log(y); if(op == 9) return pow(x, y) * log(z); if(op == 10) return pow(y, x) * log(z); if(op == 11) return x * y * log(z); } if(op == 1) return log(log(x)) + z * log(y); if(op == 2) return log(log(x)) + y * log(z); if(op == 3) return log(z * y * log(x)); if(op == 5) return log(log(y)) + z * log(x); if(op == 6) return log(log(y)) + x * log(z); if(op == 7) return log(z * x * log(y)); if(op == 9) return log(log(z)) + y * log(x); if(op == 10) return log(log(z)) + x * log(y); if(op == 11) return log(x * y * log(z)); } int main(void) { cin >> x >> y >> z; long double M = -1e300; int pos; if(x < 1.001 && y < 1.001 && z < 1.001 || x > 0.999) for(int i = 1; i < 4; i++) if(f(i) > M) M = f(i), pos = i; if(x < 1.001 && y < 1.001 && z < 1.001 || y > 0.999) for(int i = 5; i < 8; i++) if(f(i) > M) M = f(i), pos = i; if(x < 1.001 && y < 1.001 && z < 1.001 || z > 0.999) for(int i = 9; i < 12; i++) if(f(i) > M) M = f(i), pos = i; printf("%s\n", s[pos]); return 0; }
2.3
CF 618 D Hamiltonian Spanning Tree
不是很懂你们贪心。
1 #include <iostream> 2 #include <cstdio> 3 using namespace std; 4 typedef long long LL; 5 const int maxn = 2e5 + 10; 6 int cnt, h[maxn], deg[maxn]; 7 int num; 8 9 struct edge 10 { 11 int to, pre; 12 } e[maxn<<1]; 13 14 void add(int from, int to) 15 { 16 cnt++; 17 e[cnt].pre = h[from]; 18 e[cnt].to = to; 19 h[from] = cnt; 20 } 21 22 int dfs(int p, int f) 23 { 24 int tmp = 0; 25 for(int i = h[p]; i; i = e[i].pre) 26 { 27 int to = e[i].to; 28 if(to == f) continue; 29 tmp += dfs(to, p); 30 } 31 if(!tmp) return 1; 32 else if(tmp == 1){ num++; return 1;} 33 else{ num += 2; return 0; } 34 } 35 36 int main(void) 37 { 38 int n, leaf = 0; 39 LL x, y; 40 scanf("%d %I64d %I64d", &n, &x, &y); 41 for(int i = 1; i < n; i++) 42 { 43 int u, v; 44 scanf("%d %d", &u, &v); 45 add(u, v), add(v, u); 46 deg[u]++, deg[v]++; 47 } 48 for(int i = 1; i <= n; i++) if(deg[i] == 1) leaf++; 49 if(x >= y) printf("%I64d\n", y * (n - 2) + (leaf >= n - 1 ? x : y)); 50 else dfs(1, 0), printf("%I64d\n", x * num + y * (n - 1 - num)); 51 return 0; 52 }
2.4-2.5
什么都没干。
2.6
HDU 5623 KK's Number
这个出题人有点萌。
1 #include <iostream> 2 #include <cstdio> 3 #include <algorithm> 4 using namespace std; 5 typedef long long LL; 6 const int maxn = 5e4 + 10; 7 bool cmp(LL x, LL y){return x > y;} 8 LL a[maxn], dp[maxn]; 9 10 int main(void) 11 { 12 int T; 13 scanf("%d", &T); 14 while(T--) 15 { 16 int N; 17 scanf("%d", &N); 18 for(int i = 0; i < N; i++) scanf("%I64d", a + i); 19 sort(a, a + N, cmp); 20 LL M = a[N] = 0LL; 21 for(int i = N - 1; i >= 0; i--) 22 { 23 dp[i] = a[i] - M; 24 M = max(M, dp[i]); 25 } 26 printf("%I64d\n", M); 27 } 28 return 0; 29 }