基于数据挖掘算法建立银行风控模型
一、BP神经网络算法
代码:
import pandas as pd import numpy as np #导入划分数据集函数 from sklearn.model_selection import train_test_split #读取数据 datafile = './data/bankloan.xls'#文件路径 data = pd.read_excel(datafile) x = data.iloc[:,:8] y = data.iloc[:,8] #划分数据集 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100) #导入模型和函数 from keras.models import Sequential from keras.layers import Dense,Dropout #导入指标 from keras.metrics import BinaryAccuracy #导入时间库计时 import time start_time = time.time() #-------------------------------------------------------# model = Sequential() model.add(Dense(input_dim=8,units=800,activation='relu'))#激活函数relu model.add(Dropout(0.5))#防止过拟合的掉落函数 model.add(Dense(input_dim=800,units=400,activation='relu')) model.add(Dropout(0.5)) model.add(Dense(input_dim=400,units=1,activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam',metrics=[BinaryAccuracy()]) model.fit(x_train,y_train,epochs=100,batch_size=128) loss,binary_accuracy = model.evaluate(x,y,batch_size=128) #--------------------------------------------------------# end_time = time.time() run_time = end_time-start_time#运行时间 print('模型运行时间:{}'.format(run_time)) print('模型损失值:{}'.format(loss)) print('模型精度:{}'.format(binary_accuracy)) yp = model.predict(x).reshape(len(y)) yp = np.around(yp,0).astype(int) #转换为整型 from cm_plot import * # 导入自行编写的混淆矩阵可视化函数 cm_plot(y,yp).show() # 显示混淆矩阵可视化结果
编写的混淆矩阵可视化函数: def cm_plot(y, yp): from sklearn.metrics import confusion_matrix # cm = confusion_matrix(y, yp) import matplotlib.pyplot as plt plt.matshow(cm, cmap=plt.cm.Greens) plt.colorbar() for x in range(len(cm)): for y in range(len(cm)): plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center') plt.ylabel('True label') plt.xlabel('Predicted label') return plt
运行结果:
二、决策树算法
代码:
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier as DTC from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score import time start_time = time.time() filePath = './data/bankloan.xls' data = pd.read_excel(filePath) x = data.iloc[:,:8] y = data.iloc[:,8] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100) #模型 dtc_clf = DTC(criterion='entropy')#决策树 #训练 dtc_clf.fit(x_train,y_train) #模型评价 dtc_yp = dtc_clf.predict(x) dtc_score = accuracy_score(y, dtc_yp) score = {"决策树得分":dtc_score} score = sorted(score.items(),key = lambda score:score[0],reverse=True) print(pd.DataFrame(score)) #中文标签、负号正常显示 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False #绘制混淆矩阵 figure = plt.subplots(figsize=(12,10)) plt.title('决策树') dtc_cm = confusion_matrix(y, dtc_yp) heatmap = sns.heatmap(dtc_cm, annot=True, fmt='d') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right') heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right') plt.ylabel("true label") plt.xlabel("predict label") plt.show() end_time = time.time() run_time = end_time-start_time#运行时间 print('模型运行时间:{}'.format(run_time)) print('模型损失值:{}'.format(loss)) print('模型精度:{}'.format(binary_accuracy))
决策树算法运行结果:
再对两者的模型运行时间和模型损失值、模型精度进行比较,表现为两种算法(模型)都是对的。