Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
InputThe first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
OutputFor each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1
哈希算法的模板题,题目数据没有当 n < m 的情况
#include<iostream> #include<cstring> #include<cstdio> using namespace std; const int N=1E6+100; const int M=1E4+7; const int base =233; const int mod=1e9+7; typedef unsigned long long ll; ll a[N],b[M]; ll ha[N],p[N]; ll gethash(ll x,ll y){ return (ha[y]%mod-(ha[x-1]%mod*p[y-x+1]%mod)%mod+mod)%mod; } int main(){ int t; // cin>>t; scanf("%d",&t); while(t--){ memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); ll n,m; scanf("%lld%lld",&n,&m); for(int i=1;i<=n;i++) scanf("%lld",&a[i]); for(int i=1;i<=m;i++) scanf("%lld",&b[i]); p[0]=1; if(n>=m){ for(int i=1;i<=n;i++){ ha[i]=((ha[i-1]%mod*base)%mod+a[i])%mod; p[i]=(p[i-1]%mod*base)%mod; } ll ans=0; for(int i=1;i<=m;i++) ans=(ans%mod*base+b[i])%mod; int pos=0; for(int i=m;i<=n;i++){ if(gethash(i-m+1,i)==ans){ pos=i-m+1; break; } } if(pos==0) pos=-1; printf("%d\n",pos); } // else { // for(int i=1;i<=m;i++){ // ha[i]=((ha[i-1]%mod*base)%mod+b[i])%mod; // p[i]=(p[i-1]%mod*base)%mod; // } // ll ans=0; // for(int i=1;i<=n;i++) ans=(ans%mod*base+a[i])%mod; // int pos=0; // for(int i=n;i<=m;i++){ // if(gethash(i-n+1,i)==ans){ // pos=i-n+1; // break; // } // } // if(pos==0) pos=-1; // printf("%d\n",pos); // } } return 0; }