Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L?
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
InputFirst line comes an integer T (T <= 12), telling the number of test cases.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.OutputFor each test case, print one line with the number of solutions satisfying the conditions above.Sample Input
2 6 72 7 33
Sample Output
72 0
昨天想了好久都没想通,,今天早上灵感突然的就来了。
题解:首先我们要理解,最大公约数和最小公倍数的关系,比如说a*b=gcd(a,b)*lcm(a,b) 如果两边同时除以gcd的平方 lcm%gcd==0 所以,如果lcm%gcd!=0的话 应该不会存在关系
第二: 我们让gcd和lcm同时除以gcd可得新的gcd和lcm gcd=1 lcm=lcm/gcd 他们分别是x/gcd y/gcd z/gcd的gcd和lcm 因此我们只要分解lcm/gcd就可以了
第三:lcm=p1^max(a1,a2,a3)*p2^max(b1,b2,b3)....
x0=p1^a1....
y0=p1^b1...
z0=p1^c1...
假如说a1 b1 c1 都不为0,那么他们的最大公约数不会是1,因此他们三者中至少有一个为0 ,最多有两个为0(3个为0的情况不会出现,p1一定是其中一个数的只质因子)由于是有顺序的
(0,a1,c1)加入最多的为a1那么C1的取值为0--a1我们先考虑为0和相等的情况 有a1-1中,,变换一下顺序一共有6(a1-1)种,还有(0,0,a1)和(0,a1,a1)我们没考虑共3+3种因此共有6(a1-1)+6种
#include<iostream> #include<cstdio> using namespace std; const int N=1e6+7; bool p[N]={1,1,0}; int prime[N]; int k=0; void pre(){ k=0; for(int i=2;i<N;i++){ if(p[i]==0){ prime[k++]=i; for(int j=i+i;j<=N;j+=i){ p[i]=1; } } } } int main(){ pre(); int t; cin>>t; while(t--){ int n,m; scanf("%d%d",&n,&m); if(m%n!=0){//最大公约数应该是最下公倍数的系数比如说a*b=gcd*lcm两边同时除以gcd的平方,so lcm%gcd=0 puts("0"); continue ; } int x=m/n; int sum=1; for(int i=0;i<k&&prime[i]<x;i++){ if(x%prime[i]==0){ int ans=0; while(x%prime[i]==0){ ans++; x=x/prime[i]; } sum*=6*ans; } } if(x>1) sum*=6; cout<<sum<<endl; } return 0; }