POJ 1811 Prime Test (Pollard-ρ)
题目链接:http://poj.org/problem?id=1811
题目大意:判断一个数是不是素数,如果是合数,求出最小的非平凡因子(非1非本身的因子)
pollard-ρ模版题……先用MillerRabin测试n是不是素数,不是的话用pollard-ρ分解.
pollard-ρ因子分解法(详见《初等数论及其应用》P135, 自己理解的还不是很透彻……)
POJ1811代码 && pollard-ρ模板:
//POJ1811 判断一个数是不是素数,如果是合数,求出最小的非平凡因子(非1非本身的因子)
#include
#include
#include
using namespace std;
//return a * b % m
unsigned long long quick_add_mod(unsigned long long a, unsigned long long b, unsigned long long m){
//为了防止long long型a * b溢出,有时需要把乘法变加法
//且因为暴力加法会超时要使用二分快速乘法模(模仿二分快速幂模……)
unsigned long long res = 0, tmp = a % m;
while(b){
if (b & 1)
{
res = res + tmp;
res = (res >= m ? res - m : res);
}
b >>= 1;
tmp <<= 1;
tmp = (tmp >= m ? tmp - m : tmp);
}
return res;
}
//return a ^ b % m
long long exp_mod(long long a, long long b, long long m){
long long res = 1 % m, tmp = a % m;
while(b){
if (b & 1){
//如果m在int范围内直接用下一式乘就可以,否则需要用下二式把乘法化加法,用快速乘法模
//res = (res * t) % m;
res = quick_add_mod(res, tmp, m);
}
//同上
//t = t * t % m;
tmp = quick_add_mod(tmp, tmp, m);
b >>= 1;
}
return res;
}
//Miller_Rabin素数测试, 素数return true.
bool Miller_Rabin(long long n){
int a[5] = {2, 3, 7, 61, 24251};
//一般Miller_Rabin素数测试是随机选择100个a,这样的错误率为0.25^100
//但在OI&&ACM中,可以使用上面一组a,在这组底数下,10^16内唯一的强伪素数为46,856,248,255,981
if (n == 2)
return true;
if (n == 1 || (n & 1) == 0)
return false;
long long b = n - 1;
for (int i = 0; i < 5; i ++){
if (a[i] >= n)
break;
while((b & 1) == 0) b >>= 1;
long long t = exp_mod(a[i], b, n);
while(b != n - 1 && t != 1 && t != n-1){
t = quick_add_mod(t, t, n);
b <<= 1;
}
if (t == n - 1 || b & 1)
continue;
else
return false;
}
return true;
}
//pollard-rho 大整数因子分解 部分
long long factor[100], nfactor, minfactor;
long long gcd(long long a, long long b){
return b ? gcd(b, a%b) : a;
}
void Factor(long long n);
void pollard_rho(long long n){
if (n <= 1)
return ;
if (Miller_Rabin(n)){
factor[nfactor ++] = n;
if (n < minfactor)
minfactor = n;
return ;
}
long long x = 2 % n, y = x, k = 2, i = 1;
long long d = 1;
while(true){
i ++;
x = (quick_add_mod(x, x, n) + 1) % n;
d = gcd((y - x + n) % n, n);
if (d > 1 && d < n){
pollard_rho(d);
pollard_rho(n/d);
return ;
}
if (y == x){
Factor(n);
return ;
}
if (i == k){
y = x;
k <<= 1;
}
}
}
void Factor(long long n){
//有时候RP不好 or n太小用下面的pollard_rho没弄出来,则暴力枚举特殊处理一下
long long d = 2;
while(n % d != 0 && d * d <= n)
d ++;
pollard_rho(d);
pollard_rho(n/d);
}
int main(){
//srand(time(0));
int t;
cin >> t;
for (int i = 0; i < t; i ++){
nfactor = 0;
minfactor = (1L << 63);
long long n;
cin >> n;
pollard_rho(n);
if (nfactor == 1 && factor[0] == n){
cout << "Prime\n";
continue;
}
sort(factor, factor+nfactor);
cout << factor[0] << endl;
}
return 0;
}
举杯独醉,饮罢飞雪,茫然又一年岁。 ------AbandonZHANG