基于SVM的数字识别
KNN也能实现数字识别但需要保留所有的训练样本,支持向量机只需要保留支持向量就可以达到类似的效果
支持向量机本质上是一个二分类器
代码如下:
# -*- coding: utf-8 -*- #完整版的支持向量机 有核函数 from numpy import * from time import sleep #导入数据集 def loadDataSet(fileName): dataMat = [] labelMat = [] fr = open(fileName) for line in fr.readlines():#按行读取 lineArr = line.strip().split('\t')#对每行分割并剔除空格 dataMat.append([float(lineArr[0]), float(lineArr[1])]) labelMat.append(float(lineArr[2])) return dataMat,labelMat #随机选择一个i!=j的数 def selectJrand(i,m): j=i #we want to select any J not equal to i while (j==i): j = int(random.uniform(0,m)) return j #数值太大太小时调整 def clipAlpha(aj,H,L): if aj > H: aj = H if L > aj: aj = L return aj #简化的SMO算法 #输入参数为(数据集,标签集,常数C,容错率,最大循环次数) def smoSimple(dataMatIn, classLabels, C, toler, maxIter): dataMatrix = mat(dataMatIn); #转换为NumPy矩阵类型 labelMat = mat(classLabels).transpose()#转换为NumPy矩阵类型,并求转置 b = 0; m,n = shape(dataMatrix) #求矩阵的大小 alphas = mat(zeros((m,1))) #生成一个0矩阵 列矩阵 iter = 0 #迭代次数 while (iter < maxIter): alphaPairsChanged = 0 #用于记录alpha是否已经优化 for i in range(m): fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b #fXi是要预测的类别 Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions #计算误差 if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)): #如果可以被优化 j = selectJrand(i,m)#随机选择一个数 fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b #fXj是要预测的类别 multiply表示各元素相乘,T是转置 Ej = fXj - float(labelMat[j]) #计算误差 alphaIold = alphas[i].copy()#python中的copy方法 alphaJold = alphas[j].copy(); if (labelMat[i] != labelMat[j]): L = max(0, alphas[j] - alphas[i]) H = min(C, C + alphas[j] - alphas[i]) else: L = max(0, alphas[j] + alphas[i] - C) H = min(C, alphas[j] + alphas[i]) if L==H: print ("L==H"); continue eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T if eta >= 0: print ("eta>=0"); continue alphas[j] -= labelMat[j]*(Ei - Ej)/eta alphas[j] = clipAlpha(alphas[j],H,L) if (abs(alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); continue alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#更新i,与j的变化量相同但是方向相反 #给两个alpha值设置常数项b b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T if (0 < alphas[i]) and (C > alphas[i]): b = b1 elif (0 < alphas[j]) and (C > alphas[j]): b = b2 else: b = (b1 + b2)/2.0 alphaPairsChanged += 1 print ("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) if (alphaPairsChanged == 0): iter += 1 # alphaPairsChanged == 0 表示未更新 else: iter = 0 # alphaPairsChanged != 0 表示已更新 print ("iteration number: %d" % iter) return b,alphas #核转换函数 #输入参数为() #元组KTup给出了核函数的信息 元组的第一个参数描述核函数的类型 def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space m,n = shape(X) K = mat(zeros((m,1))) if kTup[0]=='lin': #线性核 K = X * A.T elif kTup[0]=='rbf': #径向基核 for j in range(m): #对矩阵的每个元素计算高斯函数的值 deltaRow = X[j,:] - A K[j] = deltaRow*deltaRow.T K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab else: #遇到无法识别的元组,程序抛出异常 raise NameError('Houston We Have a Problem That Kernel is not recognized') return K #建立一个数据结构来保存重要值 class optStruct: def __init__(self,dataMatIn, classLabels, C, toler, kTup): #使用参数来初始化结构 self.X = dataMatIn self.labelMat = classLabels self.C = C self.tol = toler self.m = shape(dataMatIn)[0] self.alphas = mat(zeros((self.m,1))) self.b = 0 self.eCache = mat(zeros((self.m,2))) #第一列是标志位第二列是实际的E值 self.K = mat(zeros((self.m,self.m))) for i in range(self.m): self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) #计算E值并返回,是从SMO中提取出来的 def calcEk(oS, k): fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b) Ek = fXk - float(oS.labelMat[k]) return Ek #计算内循环的alpha def selectJ(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej maxK = -1; maxDeltaE = 0; Ej = 0 oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E validEcacheList = nonzero(oS.eCache[:,0].A)[0] if (len(validEcacheList)) > 1: for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E if k == i: continue #don't calc for i, waste of time Ek = calcEk(oS, k) deltaE = abs(Ei - Ek) if (deltaE > maxDeltaE):#改变最大的那个值 maxK = k; maxDeltaE = deltaE; Ej = Ek return maxK, Ej else: #in this case (first time around) we don't have any valid eCache values j = selectJrand(i, oS.m) Ej = calcEk(oS, j) return j, Ej #更新 def updateEk(oS, k):#after any alpha has changed update the new value in the cache Ek = calcEk(oS, k) oS.eCache[k] = [1,Ek] #与smoSimple类似但是有改进 def innerL(i, oS): Ei = calcEk(oS, i) if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy(); if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS.alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) if L==H: print ("L==H"); return 0 eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel if eta >= 0: print ("eta>=0"); return 0 oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) updateEk(oS, j) #added this for the Ecache if (abs(oS.alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); return 0 oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j] b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j] if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2 else: oS.b = (b1 + b2)/2.0 return 1 else: return 0 #有核函数的完整版的SMO算法 #输入参数为(数据集,标签集,常数C,容错率,最大循环次数,核函数) def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup) iter = 0 entireSet = True alphaPairsChanged = 0 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): alphaPairsChanged = 0 if entireSet: #go over all for i in range(oS.m): alphaPairsChanged += innerL(i,oS) print ("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 else:#go over non-bound (railed) alphas nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] for i in nonBoundIs: alphaPairsChanged += innerL(i,oS) print ("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 if entireSet: entireSet = False #toggle entire set loop elif (alphaPairsChanged == 0): entireSet = True print ("iteration number: %d" % iter) return oS.b,oS.alphas #计算WS def calcWs(alphas,dataArr,classLabels): X = mat(dataArr); labelMat = mat(classLabels).transpose() m,n = shape(X) w = zeros((n,1)) for i in range(m): w += multiply(alphas[i]*labelMat[i],X[i,:].T) return w #测试径向基核函数 def testRbf(k1=1.3): dataArr,labelArr = loadDataSet('testSetRBF.txt') b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important datMat=mat(dataArr); labelMat = mat(labelArr).transpose() svInd=nonzero(alphas.A>0)[0]#得到大于零的alpha值 从而得到支持向量 sVs=datMat[svInd] #get matrix of only support vectors labelSV = labelMat[svInd]; print ("there are %d Support Vectors" % shape(sVs)[0]) m,n = shape(datMat) errorCount = 0 for i in range(m):#利用核函数分类 kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print ("the training error rate is: %f" % (float(errorCount)/m)) dataArr,labelArr = loadDataSet('testSetRBF2.txt') errorCount = 0 datMat=mat(dataArr); labelMat = mat(labelArr).transpose() m,n = shape(datMat) for i in range(m):#利用核函数测试 kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print ("the test error rate is: %f" % (float(errorCount)/m)) #********以下为使用核函数支持向量机做手写识别分类***********# #转换为向量 def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0,32*i+j] = int(lineStr[j]) return returnVect #加载图像 def loadImages(dirName): from os import listdir hwLabels = [] trainingFileList = listdir(dirName) #load the training set m = len(trainingFileList) trainingMat = zeros((m,1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] #take off .txt classNumStr = int(fileStr.split('_')[0]) if classNumStr == 9: #二分类 hwLabels.append(-1) else: hwLabels.append(1) trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr)) return trainingMat, hwLabels #和testRbf差不多也是一个测试函数 def testDigits(kTup=('rbf', 10)):#设置了默认的核函数 dataArr,labelArr = loadImages('trainingDigits') b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup) datMat=mat(dataArr); labelMat = mat(labelArr).transpose() svInd=nonzero(alphas.A>0)[0] sVs=datMat[svInd] labelSV = labelMat[svInd]; print ("there are %d Support Vectors" % shape(sVs)[0]) m,n = shape(datMat) errorCount = 0 for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],kTup) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print ("the training error rate is: %f" % (float(errorCount)/m)) dataArr,labelArr = loadImages('testDigits') errorCount = 0 datMat=mat(dataArr); labelMat = mat(labelArr).transpose() m,n = shape(datMat) for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],kTup) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print ("the test error rate is: %f" % (float(errorCount)/m))
结果如下:
》import svm 》svm.testDigits(kTup=('rbf', 10)) there are 125 Support Vectors the training error rate is: 0.000000 the test error rate is: 0.005376
除此外要有公式推导