Loading

noip模拟58

A. Lesson5!

发现如果某个点都判断是不是在最长路的话会被卡成 \(O(n^2)\).

考虑怎么维护最长路径.

线段树,我们最初先反着走一遍,找到逆着走的最长路.

然后选择一个个删除,之后回来.

发现可以覆盖到所有路径.

A_code
#include<bits/stdc++.h>
using namespace std;
namespace BSS {
	#define ll long long int
	#define ull unsigned ll
	#define lf long double
	#define lbt(x) (x&(-x))
	#define mp(x,y) make_pair(x,y)
	#define lb lower_bound
	#define ub upper_bound
	#define Fill(x,y) memset(x,y,sizeof x)
	#define Copy(x,y) memcpy(x,y,sizeof x)
	#define File(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout)
	inline ll read() {
		ll res=0; bool cit=1; char ch;
		while(!isdigit(ch=getchar())) if(ch=='-') cit=0; 
		while(isdigit(ch)) res=(res<<3)+(res<<1)+(ch^48),ch=getchar();
		return cit?res:-res;
	}
} using namespace BSS;

const ll N=1e5+21,inf=1e15;

ll m,n,head,tail,cnt,ansd,ansx,Ts;
ll que[N],f[N],g[N],df[N],dg[N],sf[N];
vector<ll> to[N],re[N];
multiset<ll> s;
inline void Topo_I(){
	head=1,tail=0; ll u; Fill(g,-0x3f);
	for(int i=1;i<=n;i++)
		if(!dg[i]) que[++tail]=i,g[i]=0;
	while(head<=tail){
		u=que[head++];
		for(auto v : re[u]){
			g[v]=max(g[v],g[u]+1);
			if(not(--dg[v])) que[++tail]=v;
		}
	}
}
inline void Topo_II(){
	head=1,tail=0; ll u; Fill(f,-0x3f);
	for(int i=1;i<=n;i++)
		if(!df[i]) que[++tail]=i,f[i]=0;
	while(head<=tail){
		u=que[head++],sf[++cnt]=u;
		for(auto v : to[u]){
			f[v]=max(f[v],f[u]+1);
			if(not(--df[v])) que[++tail]=v;
		}
	}
}
signed main(){
	File(johnny);
	Ts=read();
	while(Ts--){
		n=read(),m=read(),ansx=-1,ansd=inf,cnt=0; ll u,v,now;
		for(int i=1;i<=m;i++){
			u=read(),v=read(),dg[u]++,df[v]++;
			to[u].push_back(v),re[v].push_back(u);
		}
		Topo_I(),Topo_II();
		for(int i=1;i<=n;i++) s.insert(g[i]);
		for(int i=1;i<=n;i++){
			u=sf[i];
			for(auto v : re[u]) s.erase(s.find(g[u]+f[v]+1));
			s.erase(s.find(g[u]));
			if(s.size()){
				now=*--s.end();
				if(now<ansd or (now==ansd and u<ansx)) 
					ansd=now,ansx=u;
			}
			for(auto v : to[u]) s.insert(f[u]+g[v]+1);
			s.insert(f[u]);
		}
		if(ansx==-1) ansx=1,ansd=0;
		printf("%lld %lld\n",ansx,ansd); s.clear();
		for(int i=1;i<=n;i++){
			df[i]=0,dg[i]=0,sf[i]=0;
			to[i].clear(),re[i].clear();
		}
	}
	exit(0);
}

B. 贝尔数

考场上只差一个矩阵快速幂.

还是对快速幂的模型掌握的不够好.

快速幂一定是有周期性的,是有规律可寻的.

而本题中可以看出是对连续的一端区间取模.

那么一定就应该是一段周期性的序列.

每次可以选择把序列向左移动 \(P\ -\ 1\) 个格子.

于是快速幂就很可做了.

B_code
#include<bits/stdc++.h>
using namespace std;
namespace BSS {
	#define ll long long int
	#define ull unsigned ll
	#define lf double
	#define lbt(x) (x&(-x))
	#define mp(x,y) make_pair(x,y)
	#define lb lower_bound 
	#define ub upper_bound
	#define Fill(x,y) memset(x,y,sizeof x)
	#define Copy(x,y) memcpy(x,y,sizeof x)
	#define File(x,y) freopen(#x,"r",stdin),freopen(#y,"w",stdout)
	#define FILE(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout)
	inline ll read() {
		int ss=0; bool cit=1; char ch;
		while(!isdigit(ch=getchar())) if(ch=='-') cit=0; 
		while(isdigit(ch)) ss=(ss<<3)+(ss<<1)+(ch^48),ch=getchar();
		return cit?ss:-ss;
	}
} using namespace BSS;

const ll mod=95041567;

ll m,n,Ts,ans;
ll md[7]={0,31,37,41,43,47};
ll f[57],bell[1007];
ll C[1007][1007],g[57][57];
ll exgcd(ll a,ll b,ll &x,ll &y){
	if(!b) return x=1,y=0,a;
	ll d=exgcd(b,a%b,x,y),z=x;
	return x=y,y=z-y*(a/b),d;
}
inline void mul(ll now){
	ll c[57]={0};
	for(int i=1;i<=now;i++){
		for(int j=1;j<=now;j++)
				c[i]=(c[i]+f[j]*g[j][i]%now)%now;
	}
	Copy(f,c);
}
inline void mulself(ll now){
	ll c[57][57]={0};
	for(int i=1;i<=now;i++){
		for(int j=1;j<=now;j++)
			for(int k=1;k<=now;k++)
				c[i][j]=(c[i][j]+g[i][k]*g[k][j]%now)%now;
	}
	Copy(g,c);
}
inline ll solve(ll x){
	Fill(g,0),Fill(f,0);
	ll b=n/(md[x]-1),st=n%(md[x]-1);
	for(int i=1;i<=md[x];i++){
		f[i]=bell[st+i-1]%md[x];
	}
	g[md[x]][1]=1;
	for(int i=2;i<=md[x];i++) g[i-1][i]=1,g[i][i]=1;
	for(;b;b>>=1,mulself(md[x])) if(b&1) mul(md[x]);
	return f[1]%md[x];
}
signed main(){
	FILE(bell);
	bell[0]=1,bell[1]=1; 
	for(int i=0;i<=1000;i++){
		C[i][0]=1;
		for(int j=1;j<=i;j++)
			C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
	}
	for(int i=1;i<=1000;i++){
		for(int j=0;j<=i;j++){
			bell[i+1]=(bell[i+1]+C[i][j]*bell[j]%mod)%mod;
		}
	}
	Ts=read(); ll res,cnt,x,y;
	while(Ts--){
		n=read(),ans=0; if(n<=1000){ printf("%lld\n",bell[n]); continue; } 
		for(int i=1;i<=5;i++){
			res=solve(i),exgcd(mod/md[i],md[i],x,y);
			ans=(ans+(x%md[i]+md[i])%mod*res%mod*(mod/md[i])%mod)%mod;
		}
		printf("%lld\n",ans%mod);
	}
	exit(0);
}

C. 穿越广场

考场感觉一定是个 \(dp\).

但是没有再去考虑和字符串有关的算法.

D. 舞动的夜晚

posted @ 2021-09-22 20:24  AaMuXiiiiii  阅读(25)  评论(0编辑  收藏  举报