在AI人工智能中如何巧妙学习大数据编程,成为五十万年薪的佼佼者
ai狗年
大数据和人工智能的关系,首先要说什么是大数据。这些年来,大数据先是被神化,继而又被妖魔化,到了今天,其实谁也不知道别人所谓的大数据指的是什么。我大数据从业者,建了一个大数据资源共享群119599574 每天分享大数据学习资料和学习路线,有时候大数据的定义里既有平台(硬件)又有分析技术。但为了说清楚大数据和人工智能的关系,我们还是回归大数据的本质:海量的、多维度、多形式的数据。
人工智能
任何智能的发展,其实都需要一个学习的过程。而近期人工智能之所以能取得突飞猛进的进展,不能不说是因为这些年来大数据长足发展的结果。正是由于各类感应器和数据采集技术的发展,我们开始拥有以往难以想象的的海量数据,同时,也开始在某一领域拥有深度的、细致的数据。而这些,都是训练某一领域“智能”的前提。
人工智能
大数据和人工智能到底是什么关系?
如果我们把人工智能看成一个嗷嗷待哺拥有无限潜力的婴儿,某一领域专业的海量的深度的数据就是喂养这个天才的奶粉。奶粉的数量决定了婴儿是否能长大,而奶粉的质量则决定了婴儿后续的智力发育水平。
与以前的众多数据分析技术相比,人工智能技术立足于神经网络,同时发展出多层神经网络,从而可以进行深度机器学习。与以外传统的算法相比,这一算法并无多余的假设前提(比如线性建模需要假设数据之间的线性关系),而是完全利用输入的数据自行模拟和构建相应的模型结构。这一算法特点决定了它是更为灵活的、且可以根据不同的训练数据而拥有自优化的能力。
大数据
但这一显著的优点带来的便是显著增加的运算量。在计算机运算能力取得突破以前,这样的算法几乎没有实际应用的价值。大概十几年前,我们尝试用神经网络运算一组并不海量的数据,整整等待三天都不一定会有结果。但今天的情况却大大不同了。高速并行运算、海量数据、更优化的算法共同促成了人工智能发展的突破。
这一突破,如果我们在三十年以后回头来看,将会是不弱于互联网对人类产生深远影响的另一项技术,它所释放的力量将再次彻底改变我们的生活。
技能图