HDU 3887 Counting Offspring(DFS序+树状数组)
Counting Offspring
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3054 Accepted Submission(s): 1031
Problem Description
You
are given a tree, it’s root is p, and the node is numbered from 1 to n.
Now define f(i) as the number of nodes whose number is less than i in
all the succeeding nodes of node i. Now we need to calculate f(i) for
any possible i.
Input
Multiple cases (no more than 10), for each case:
The first line contains two integers n (0<n<=10^5) and p, representing this tree has n nodes, its root is p.
Following n-1 lines, each line has two integers, representing an edge in this tree.
The input terminates with two zeros.
The first line contains two integers n (0<n<=10^5) and p, representing this tree has n nodes, its root is p.
Following n-1 lines, each line has two integers, representing an edge in this tree.
The input terminates with two zeros.
Output
For each test case, output n integer in one line representing f(1), f(2) … f(n), separated by a space.
Sample Input
15 7
7 10
7 1
7 9
7 3
7 4
10 14
14 2
14 13
9 11
9 6
6 5
6 8
3 15
3 12
0 0
Sample Output
0 0 0 0 0 1 6 0 3 1 0 0 0 2 0
Author
bnugong
Source
题意:求在一个有根节点的树中 每个节点的子树中有多少个小于改点的序号
DFS序找到每个节点的时间戳 用树状数组直接维护这个区间就可以了
1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 #include<cctype> 5 #include<cmath> 6 #include<cstring> 7 #include<map> 8 #include<set> 9 #include<queue> 10 #include<vector> 11 #include<algorithm> 12 #include<string> 13 #define ll long long 14 #define eps 1e-10 15 #define LL unsigned long long 16 using namespace std; 17 const int inf=0x3f3f3f3f; 18 const int N=200000+10; 19 const int mod=1e9+7; 20 int head[N]; 21 int tot,time; 22 int L[N],R[N]; 23 struct node{ 24 int to,next; 25 }edge[N<<1]; 26 int a[N*5]; 27 void init(){ 28 memset(head,-1,sizeof(head)); 29 tot=0; 30 time=0; 31 } 32 void add(int u,int v){ 33 edge[tot].to=v; 34 edge[tot].next=head[u]; 35 head[u]=tot++; 36 } 37 void DFS(int x,int fa){ 38 L[x]=++time; 39 for(int i=head[x];i!=-1;i=edge[i].next){ 40 int v=edge[i].to; 41 if(v==fa)continue; 42 DFS(v,x); 43 } 44 R[x]=time; 45 46 } 47 int lowbit(int x){ 48 return x&(-x); 49 } 50 void update(int x,int y){ 51 while(x<=time){ 52 a[x]=a[x]+y; 53 x=x+lowbit(x); 54 } 55 } 56 int getsum(int x){ 57 int ans=0; 58 while(x>0){ 59 //cout<<2<<endl; 60 ans=ans+a[x]; 61 x=x-lowbit(x); 62 } 63 return ans; 64 } 65 int main(){ 66 int n,p; 67 while(scanf("%d%d",&n,&p)!=EOF){ 68 if(n==0&&p==0)break; 69 init(); 70 memset(a,0,sizeof(a)); 71 for(int i=1;i<n;i++){ 72 int u,v; 73 scanf("%d%d",&u,&v); 74 add(u,v); 75 add(v,u); 76 } 77 DFS(p,-1); 78 for(int i=1;i<=n;i++){ 79 int ans=getsum(R[i])-getsum(L[i]-1); 80 if(i!=n)cout<<ans<<" "; 81 else{ 82 cout<<ans<<endl; 83 } 84 update(L[i],1); 85 } 86 } 87 }