hdu 2476 String painter(区间dp)
String painter
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4108 Accepted Submission(s): 1915
Problem Description
There
are two strings A and B with equal length. Both strings are made up of
lower case letters. Now you have a powerful string painter. With the
help of the painter, you can change a segment of characters of a string
to any other character you want. That is, after using the painter, the
segment is made up of only one kind of character. Now your task is to
change A to B using string painter. What’s the minimum number of
operations?
Input
Input contains multiple cases. Each case consists of two lines:
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
Output
A single line contains one integer representing the answer.
Sample Input
zzzzzfzzzzz
abcdefedcba
abababababab
cdcdcdcdcdcd
Sample Output
6
7
Source
题意:两个字符串AB A->B按照规则变 规则是将A字符串中【l r】区间的字符变成一个字符 问最小的变换次数
我们先用一个空串用区间dp按照规则去求出空串变成B需要的至少变换次数(dp【0】【len-1】)
最后我们根据AB字符串选择dp
if(a[i]==b[i])dp[0][i]=dp[0][i-1];
else dp[0][i]=min(dp[0][i],dp[0][j]+dp[j+1][i]) (j<i);
1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 #include<cctype> 5 #include<cmath> 6 #include<cstring> 7 #include<map> 8 #include<stack> 9 #include<set> 10 #include<vector> 11 #include<algorithm> 12 #include<string.h> 13 typedef long long ll; 14 typedef unsigned long long LL; 15 using namespace std; 16 const int INF=0x3f3f3f3f; 17 const double eps=0.0000000001; 18 const int N=1000+10; 19 char a[N],b[N]; 20 int dp[N][N]; 21 int DP[N]; 22 int main(){ 23 while(gets(a)){ 24 gets(b); 25 int len=strlen(a); 26 memset(dp,INF,sizeof(dp)); 27 for(int i=0;i<len;i++)dp[i][i]=1; 28 for(int t=1;t<len;t++){ 29 for(int i=0;i+t<len;i++){ 30 int j=i+t; 31 if(b[i]==b[j])dp[i][j]=dp[i][j-1]; 32 else{ 33 for(int k=i;k<j;k++) 34 dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]); 35 } 36 } 37 } 38 for(int i=0;i<len;i++){ 39 if(i==0&&a[i]==b[i])dp[0][i]=0; 40 else if(a[i]==b[i])dp[0][i]=dp[0][i-1]; 41 for(int j=0;j<i;j++) 42 dp[0][i]=min(dp[0][i],dp[0][j]+dp[j+1][i]); 43 } 44 cout<<dp[0][len-1]<<endl; 45 } 46 }