poj 2955 Brackets(区间dp)

                                                                                                Brackets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7756   Accepted: 4114

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < imn, ai1ai2aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

以前写过一道类似的题 最优矩阵乘法的那个 也是一道dp 发现这叫区间dp
dp[i][j]表示【i j]这个区间的最大匹配个数
我们可以通过求【i,k],[k+1,j]来求这个【i,j]
所以我们只要枚举这个区间找到最大的那个
转移方程 dp[i][j]=max(dp[i][k],dp[k+1][j]);
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstdlib>
 4 #include<cctype>
 5 #include<cmath>
 6 #include<cstring>
 7 #include<map>
 8 #include<stack>
 9 #include<set>
10 #include<vector>
11 #include<algorithm>
12 #include<string.h>
13 typedef long long ll;
14 typedef unsigned long long LL;
15 using namespace std;
16 const int INF=0x3f3f3f3f;
17 const double eps=0.0000000001;
18 const int N=1000+10;
19 char str[N];
20 int dp[N][N];
21 int judge(int x,int y){
22     if(str[x]=='('&&str[y]==')')return 1;
23     if(str[x]=='['&&str[y]==']')return 1;
24     return 0;
25 }
26 int main(){
27     while(gets(str)){
28         if(strcmp(str,"end")==0)break;
29         memset(dp,0,sizeof(dp));
30         int len=strlen(str);
31         for(int t=1;t<len;t++){
32             for(int i=0;i+t<len;i++){
33                 int j=i+t;
34                 if(judge(i,j)){
35                     if(j-i==1)dp[i][j]=2;
36                     else dp[i][j]=dp[i+1][j-1]+2;
37                 }
38                 for(int k=i;k<j;k++){
39                     dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]);
40                 }
41             }
42         }
43         cout<<dp[0][len-1]<<endl;
44     }
45 }

 

posted on 2017-05-05 20:48  见字如面  阅读(403)  评论(0编辑  收藏  举报

导航