\(\frak{Description}\)

\(\rm Link.\)

\(\frak{Solution}\)

看到 \(\gcd\) 考虑用 \(\varphi*1=\rm id\) 来化简

\[\begin{align} val(T)&=\left(\sum_{i=1}^{n-1}w_{e_i}\right)\cdot \gcd(w_{e_1},w_{e_2},\dots,w_{e_{n-1}})\\ &=\left(\sum_{i=1}^{n-1}w_{e_i}\right)\cdot \sum_{d\mid w_{e_1},\dots,d\mid w_{e_{n-1}}}\varphi(d)\\ &=\sum_{d}\varphi(d)\cdot \sum_{T}\left(\sum_{i=1}^{n-1}w_{e_i}\right)\cdot [d\mid w_{e_1},\dots,d\mid w_{e_{n-1}}] \end{align} \]

枚举因数,后面的一坨可以用矩阵树定理。但是矩阵树定理是求 "权值积之和" 而不是 "权值和之和",我们还需要做一个转化:将权值 \(w\) 变成 \(wx+1\)(模 \(x^2\) 意义下),这样最后求出 "权值积之和",而 "权值和之和" 就是一次项系数!

还有一个问题,计算时涉及到高斯消元,会有元素的加减乘除。如何推导 \(\frac{ax+b}{cx+d}\)(在模 \(x^2\) 意义下)?我们设 \(\frac{1}{cx+d}=fx+g\),可以推出 \(g=1/d\),从而得到 \(f=\frac{-c}{d^2}\),代回去就可以得知 \(\frac{ax+b}{cx+d}=\frac{b}{d}+\frac{ad-bc}{d^2}\cdot x\).

最后还可以做一些剪枝:只计算边数大于等于 \(n-1\) 的矩阵。复杂度就是 \(\mathcal O\left(n^3\cdot \frac{\sum \sigma_0(d)}{n-1}\right)=\mathcal O(n^2\cdot \sum\sigma_0(d))\).

另外这题还有一个拓展:给定一张图,图上每条边是红色或蓝色,求恰有 \(k\) 条红边的生成树个数。\(n\le 50\).

类似地,对于限制条件也可以利用生成函数,把红边边权设为 \(x+0\),蓝边为 \(0x+1\). 那么最后得到的多项式中 \(x^k\) 的系数就是答案。

\(\frak{Code}\)

# include <cctype>
# include <cstdio>
# define print(x,y) write(x), putchar(y)

template <class T>
inline T read(const T sample) {
	T x=0; char s; bool f=0;
	while(!isdigit(s=getchar())) f|=(s=='-');
	for(; isdigit(s); s=getchar()) x=(x<<1)+(x<<3)+(s^48);
	return f? -x: x;
}
template <class T>
inline void write(T x) {
	static int writ[50], w_tp=0;
	if(x<0) putchar('-'), x=-x;
	do writ[++w_tp]=x-x/10*10, x/=10; while(x);
	while(putchar(writ[w_tp--]^48), w_tp);
}

# include <cstring>
# include <iostream>
using namespace std;
typedef long long ll;

const int maxv = 152511;
const int mod = 998244353;

inline int inc(int x,int y) { return x+y>=mod?x+y-mod:x+y; }
inline int adj(int x,int y) { return x+y>=mod?x+y-mod:(x+y<0?x+y+mod:x+y); }
inline ll inv(ll x,int y=mod-2) {
	ll r=1;
	for(; y; y>>=1, x=x*x%mod)
		if(y&1) r=r*x%mod;
	return r;
}

struct node {

	ll x,y;
	node() {}
	node(int X,int Y):x(X),y(Y) {}

	node operator + (const node& t) const { return node((x+t.x)%mod,(y+t.y)%mod); }
	node operator - (const node& t) const { return node((x-t.x)%mod,(y-t.y)%mod); }
	node operator * (const node& t) const { return node(x*t.x%mod,(x*t.y+y*t.x)%mod); }
	node operator / (const node& t) const {
		ll Inv = inv(t.x); 
		return node(x*Inv%mod, (y*t.x-x*t.y)%mod*Inv%mod*Inv%mod);
	}
	inline void Print() { printf("(%lld, %lld)  ",x,y); }

} a[33][33];
struct edge { int u,v,w; } E[900];
bool is[maxv];
int n,m,maxw,cnt[maxv],pc,p[maxv],phi[maxv];

void sieve(int n) {
	phi[1]=1;
	for(int i=2;i<=n;++i) {
		if(!is[i]) p[++pc]=i, phi[i]=i-1;
		for(int j=1; j<=pc && i*p[j]<=n; ++j) {
			is[i*p[j]] = true;
			if(i%p[j]==0) {
				phi[i*p[j]] = phi[i]*p[j];
				break;
			} else phi[i*p[j]] = phi[i]*(p[j]-1);
		}
	}
}

void div(int x) {
	for(int i=1; i*i<=x; ++i)
		if(x%i==0) {
			++ cnt[i];
			if(i*i!=x) ++ cnt[x/i];
		}
}

void consGraph(int val) { 
	memset(a,0,sizeof a); 
	node t; int x,y;
	for(int i=1;i<=m;++i) {
		if(E[i].w%val) continue;
		t = node(1,E[i].w);
		x=E[i].u, y=E[i].v;
		a[x][x] = a[x][x]+t;
		a[y][y] = a[y][y]+t;
		a[x][y] = a[x][y]-t;
		a[y][x] = a[y][x]-t;
	}
}

node gauss() { 
	int j; bool f=0; node ret=node(1,0), Inv, mul;
	for(int i=1;i<=n-1;++i) {
		for(j=i;j<=n-1;++j) if(a[j][i].x) break;
		if(j>n-1) return node(0,0);
		if(i^j) swap(a[i],a[j]), f^=1;
		ret = ret*a[i][i];
		Inv = node(1,0)/a[i][i];
		for(j=i+1;j<=n-1;++j) {
			mul = a[j][i]*Inv;
			for(int k=i;k<=n-1;++k)
				a[j][k] = a[j][k]-mul*a[i][k];
		}
	} 
	return f? node(0,0)-ret: ret;
}

int main() {
	n=read(9), m=read(9);
	for(int i=1;i<=m;++i) {
		E[i].u=read(9), E[i].v=read(9);
		div(E[i].w=read(9));
		maxw = max(maxw,E[i].w);
	}
	sieve(maxw); int ans=0;
	for(int i=1;i<=maxw;++i) if(cnt[i]>=n-1)
		consGraph(i), ans = adj(ans,gauss().y%mod*phi[i]%mod);
	print(ans,'\n');
	return 0;	
}
posted on 2020-03-28 20:45  Oxide  阅读(17)  评论(0编辑  收藏  举报