【BZOJ 1486】 [HNOI2009]最小圈
【链接】 我是链接,点我呀:)
【题意】
【题解】
我们可以只想那个均值最小的环。
我们不知道那个环由哪些边构成
但我们可以把每条边都减掉mid
那个环受到的影响是什么呢?
如果这个均值最小的环的均值没有mid那么大。
那么这个环就会变成负权环(因为\(环的均值<mid那么,环的均值*环的大小=这个环的边权和<mid*环大小\))。
如果平均值比mid大
那么减掉之后显然是不会变成负权环的。
由于这个环是最小环那么其他的环也不会变成负权环。
因此。我们可以根据是否出现了负权环。来修改这个mid的值。
显然有单调性。那么二分答案即可。
判负权环的时候用了黑科技
dfs版的spfa..
每次优先找负权的边。
然后从那个边的起点开始进行spfa.
走的路上不断标记某个点是否走过。
然后如果松弛条件满足。
且目标点已经走过。
那么就说明找到了一个环。
【代码】
#include <bits/stdc++.h>
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define all(x) x.begin(),x.end()
#define pb push_back
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
const double pi = acos(-1);
const int dx[4] = {0,0,1,-1};
const int dy[4] = {1,-1,0,0};
const int N = 3000;
int n,m;
vector<pair<int,double> > g[N+10];
double dis[N+10];
bool vis[N+10],flag;
void dfs(int x,double delta){
vis[x] = 1;
for (int i = 0;i < (int)g[x].size();i++){
pair<int,double> temp = g[x][i];
int y = temp.first;double cost = temp.second-delta;
if (dis[y]>dis[x]+cost){
if (vis[y]||flag){
flag = true;
break;
}else{
dis[y] = dis[x]+cost;
dfs(y,delta);
}
}
}
vis[x] = 0;
}
bool ok(double delta){
for (int i = 1;i <= n;i++) dis[i] = 0;
flag = false;
for (int i = 1;i <= n;i++)
if (dis[i]==0){
dfs(i,delta);
}
return flag;
}
int main(){
#ifdef LOCAL_DEFINE
freopen("rush_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(0),cin.tie(0);
cin >> n >> m;
for (int i = 1;i <= m;i++){
int x,y;double z;
cin >> x >> y >> z;
g[x].push_back(make_pair(y,z));
}
double l = -1e7-10,r = 1e7+10,temp = 0.0;
for (int i = 1;i <= 100;i++){
double mid = (l+r)/2.0;
if (!ok(mid)){
temp = mid;
l = mid;
}else{
r = mid;
}
}
cout<<fixed<<setprecision(8)<<temp<<endl;
return 0;
}