【37.07%】【UESTC 360】Another LCIS
Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others)
For a sequence CIS
(Continuous Increasing Subsequence). The longest CIS
of
a sequence is called the LCIS
(Longest Continuous Increasing Subsequence).
In this problem, we will give you a sequence first, and then some add
operations
and some query
operations. An add operation adds a value to each member
in a specified interval. For a query operation, you should output the length of the LCIS of a specified interval.
Input
The first line of the input is an integer
Every test case begins with two integers a
or q
. a
is
followed by three integers q
is followed by two integers LCIS
of interval
Output
For every test case, you should output Case
#k:
on a single line first, where q
query, output the answer on a single line. See sample
for more details.
Sample input and output
Sample Input | Sample Output |
---|---|
1 5 6 0 1 2 3 4 q 1 4 a 1 2 -10 a 1 1 -6 a 5 5 -4 q 2 3 q 4 4 |
Case #1: 4 2 1 |
Source
【题解】
给你一个初始序列。
然后会不定期的问你这个序列在l..r的区间内最长(严格)上升子序列的长度。
但是还没完。这个序列是会发生改变的。
会定期把区间内的某一段同时递增或减少一个值。
要用线段树来解决。
但是线段树的域应该记录什么呢?
可以这样想。
一个区间内的最长上升子序列。要么整个全部在区间的左半部分。要么整个全部在区间的右半部分。
对不对??
傻逼
还有一种情况呢!
那就是横跨了中间这个域。一部分在左半部分一部分在右半部分。
是不是和hotel那题很像?
用llong[rt],rlong[rt]分别表示起点在(rt节点表示的区间的)左端点和终点在(rt节点表示的区间的)右端点的最长上升子序列的长度。
然后maxlong[rt]表示整个区间内不管在哪里的最长上升子序列的长度。
然后可以想象一下
如果rt的左儿子(x)和右儿子(y)他们满足
x的最右半那个元素<y的最左边那个元素。
那么就可以串成一个rlong[rt<<1]+llong[rt<<1|1]了。这就是横跨的情况了。
根据这个思路。我们还要在线段树的域上加上两个标志,分别记录这个节点表示的区间的最左边的那个元素和最右边的那个元素。
maxlong[rt] = max{maxlong[rt<<1],maxlong[rt<<|1]}
if (rnum[rt<<1]<lnum[rt<<1|1])
maxlong[rt] = max{maxlong,rlong[rt<<1]+llong[rt<<1|1]};
然后就是询问的一些繁琐的事情了。看代码吧。
【代码】
#include <cstdio> #include <algorithm> #define lson begin,m,rt<<1 #define rson m+1,end,rt<<1|1 using namespace std; const int MAXN = 100100; int n, m; int maxlong[MAXN*4],llong[MAXN * 4],rlong[MAXN*4],rnum[MAXN*4],lnum[MAXN*4]; int lazy_tag[MAXN * 4]; void push_up(int rt,int len)//push_up会繁琐一些。 { bool flag = rnum[rt << 1] < lnum[rt << 1 | 1]; maxlong[rt] = max(maxlong[rt<<1], maxlong[rt<<1|1]); if (flag) maxlong[rt] = max(maxlong[rt], rlong[rt << 1] + llong[rt << 1 | 1]); llong[rt] = llong[rt << 1];//左儿子的最左边那段 if (llong[rt] == (len - (len >> 1)) && flag)//如果整个左儿子都递增 且flag(自己看是什么) llong[rt] += llong[rt << 1 | 1];//那么就可以加上右儿子的左边部分。 rlong[rt] = rlong[rt << 1 | 1]; if (rlong[rt] == (len >> 1) && flag) rlong[rt] += rlong[rt << 1]; lnum[rt] = lnum[rt << 1]; rnum[rt] = rnum[rt << 1 | 1]; } void build(int begin, int end, int rt) //建树顺便输入 { maxlong[rt] = llong[rt] = rlong[rt] = lazy_tag[rt] = 0; if (begin == end) { int x; scanf("%d", &x); llong[rt] = rlong[rt] = maxlong[rt] = 1; rnum[rt] = lnum[rt] = x; return; } int m = (begin + end) >> 1; build(lson); build(rson); push_up(rt,end-begin+1); } void input_data() { scanf("%d%d", &n, &m); build(1, n, 1); } void push_down(int rt)//处理懒惰标记 { if (lazy_tag[rt] != 0) { lazy_tag[rt << 1] += lazy_tag[rt]; lazy_tag[rt << 1 | 1] += lazy_tag[rt]; lnum[rt << 1] += lazy_tag[rt]; rnum[rt << 1] += lazy_tag[rt]; lnum[rt << 1 | 1] += lazy_tag[rt]; rnum[rt << 1 | 1] += lazy_tag[rt]; lazy_tag[rt] = 0; } } void up_data(int l, int r, int num, int begin, int end, int rt) { if (l <= begin && end <= r) {//递增的时候最长上升序列不会变。因为是一整段同时递增 lazy_tag[rt] += num; lnum[rt] += num; rnum[rt] += num; return; } push_down(rt); int m = (begin + end) >> 1; if (l <= m) up_data(l, r, num, lson); if (m < r) up_data(l, r, num, rson); push_up(rt, end - begin + 1); } int query(int l, int r, int begin, int end, int rt)//询问也有点复杂 { if (l <= begin && end <= r) return maxlong[rt]; push_down(rt); int m = (begin + end) >> 1; int temp = 0; bool flag1 = false, flag2 = false; if (l <= m) { temp = max(temp, query(l, r, lson)); flag1 = true; } if (m < r) { temp = max(temp, query(l, r, rson)); flag2 = true; } if (flag1 && flag2 && rnum[rt << 1] < lnum[rt << 1 | 1]) //如果有左半部分、右半部分。且能够串起来 { int left = min(m - l + 1, rlong[rt << 1]);//不能超过询问的区间长度 int right = min(r - m, llong[rt << 1 | 1]); temp = max(temp, left + right);//加起来 } return temp; } void output_ans() { for (int i = 1; i <= m; i++) { char op[5]; int x, y, z; scanf("%s", op); if (op[0] == 'a') { scanf("%d%d%d", &x, &y, &z); up_data(x, y, z,1, n, 1); } else if (op[0] == 'q') { scanf("%d%d", &x, &y); printf("%d\n", query(x, y, 1, n, 1)); } } } int main() { //freopen("F:\\rush.txt", "r", stdin); //freopen("F:\\rush_out.txt", "w", stdout); int t; scanf("%d", &t); for (int ii = 1; ii <= t; ii++) { printf("Case #%d:\n",ii); input_data(); output_ans(); } return 0; }