【Codeforces 476C】Dreamoon and Sums
【链接】 我是链接,点我呀:)
【题意】
【题解】
枚举k从1~a 这样k就固定了 n = x / b; m = x % b; n = m*k ····① x = b*n + m x = (b*k+1)*m 而m∈[1..b-1] 所以求和一下就是∑x = (b*k+1)*( b*(b-1)/2) 这里我们m属于1..b-1,显然由①式可知,k不同的时候,m从1到b-1变化的话, 得到的n也是不同的.(因此每一组(n,m)都不会相同) 所以如果我们枚举不同的k值,然后m从1到b-1变化不会得到重复的x值的,因为每一个x值 都唯一标识了一组(n,m),而(n,m)不会重复 枚举k加起来就好啦【代码】
import java.io.*;
import java.util.*;
public class Main {
static InputReader in;
static PrintWriter out;
public static void main(String[] args) throws IOException{
//InputStream ins = new FileInputStream("E:\\rush.txt");
InputStream ins = System.in;
in = new InputReader(ins);
out = new PrintWriter(System.out);
//code start from here
new Task().solve(in, out);
out.close();
}
static int N = 50000;
static class Task{
/*
* n = x / b;
* m = x % b;
* n = m*k
* x = b*n + m
* x = (b*k+1)*m
* m 1..b-1
* ∑x = (b*k+1)*( b*(b-1)/2)
* k 1..a
*/
long a,b;
long MOD = (int)(1e9+7),ans = 0;
public void solve(InputReader in,PrintWriter out) {
a = in.nextInt();b = in.nextInt();
for (long k = 1;k <= a;k++) {
long temp = (b*k+1)%MOD;
long temp1 = b*(b-1)/2%MOD;
temp = temp*temp1%MOD;
ans = (ans+temp)%MOD;
}
out.println(ans);
}
}
static class InputReader{
public BufferedReader br;
public StringTokenizer tokenizer;
public InputReader(InputStream ins) {
br = new BufferedReader(new InputStreamReader(ins));
tokenizer = null;
}
public String next(){
while (tokenizer==null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(br.readLine());
}catch(IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}