Atcoder ABC 350 全题解
题外话
别以为博主之前几场 ABC 都咕咕咕了,最近状态不好,这次 ABC 终于回来了(也有可能是题目变容易了,有图为证)
P.S. 请耐心看到最后!!否则后果自负!!!
AB
这年头谁不会 AB 啊
当然有。不学 OI 的人。
C
考虑选择排序,依次将 $ 1, 2, 3 \cdots $ 与它们应该在的位置进行交换。
那如果真的“选择”排序会 TLE。
把下标存起来,交换数的时候同时交换下标就可以了。
C
// Problem: C - Sort
// Contest: AtCoder - AtCoder Beginner Contest 350
// URL: https://atcoder.jp/contests/abc350/tasks/abc350_c
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
int ansa[200005], ansb[200005];
int cnt = 0;
void print_swap(int u, int v) {
if (u != v) {
if (u < v) {
ansa[cnt] = u, ansb[cnt] = v;
cnt++;
} else {
ansa[cnt] = v, ansb[cnt] = u;
cnt++;
}
}
}
int a[200005], b[200005];
int main() {
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
int x;
scanf("%d", &x);
x--;
a[i] = x;
b[x] = i;
}
for (int i = 0; i < n; i++) {
print_swap(i + 1, b[i] + 1);
int x = a[i];
swap(a[i], a[b[i]]);
swap(b[x], b[i]);
}
printf("%d\n", cnt);
for (int i = 0; i < cnt; i++) {
printf("%d %d\n", ansa[i], ansb[i]);
}
}
D
假如我们的图连通,那我们可以连距离为 $ 2 $ 的,距离为 $ 3 $ 的,以此类推,连成一张完全图。
那如果不联通,我们就把图视为一些连通图,统计最后有多少对好友,再减去 $ M $ 就可以了。
可以 dsu,可以 dfs。
D
// Problem: D - New Friends
// Contest: AtCoder - AtCoder Beginner Contest 350
// URL: https://atcoder.jp/contests/abc350/tasks/abc350_d
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
int color[200005];
vector<int> graph[200005];
void dfs(int u, int co) { // 我用的是 dfs
if (color[u] != -1) {
return;
}
color[u] = co;
for (int v : graph[u]) {
dfs(v, co);
}
}
int cnt[200005]; // 全 dfs 完了统一统计各颜色出现次数
int main() {
int n, m;
scanf("%d %d", &n, &m);
for (int i = 0; i < m; i++) {
int u, v;
scanf("%d %d", &u, &v);
u--, v--;
graph[u].push_back(v);
graph[v].push_back(u);
}
memset(color, -1, sizeof color);
for (int i = 0; i < n; i++) {
dfs(i, i); // 染色
}
for (int i = 0; i < n; i++) {
cnt[color[i]]++; // 统计
}
ll ans = 0;
for (int i = 0; i < n; i++) {
// cerr << cnt[i] << " ";
ans += (1ll * cnt[i] * (cnt[i] - 1)); // 好友对数*2
}
printf("%lld", ans / 2 - m); // /2-m
}
E
期望 DP。
为了方便,接下来用 $ x / a $ 代表 $ \lfloor \cfrac{x}{a} \rfloor $。
先考虑一个最简单的柿子
那么这个式子是有后效性的。那怎么办捏。
很简单,一元一次方程谁不会解哪!设 $ f(n) $ 等于原先 $ \min $ 里右边的东西,解一下就行了。
可得
一看数据范围……天哪!$ 10^{18} $ 怎么办?
其实想想就能知道状态数很少,因此 map + 记忆化搜索就行了。
E
// Problem: E - Toward 0
// Contest: AtCoder - AtCoder Beginner Contest 350
// URL: https://atcoder.jp/contests/abc350/tasks/abc350_e
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
ll n, a, x, y;
double small[3000005]; // 为了保险我预处理了 <= 3000000 的答案
map<ll, double> f; // 记忆化搜索
double dfs(ll n) {
if (n <= 3000000) {
return small[n];
} else if (f.count(n)) {
return f[n];
}
return f[n] = min(dfs(n / a) + x, (dfs(n / 2) + dfs(n / 3) + dfs(n / 4) + dfs(n / 5) + dfs(n / 6)) / 5 + 6.0 / 5.0 * y); // 题解中给出的式子
}
int main() {
scanf("%lld %lld %lld %lld", &n, &a, &x, &y);
f[0] = 0;
for (int i = 1; i <= 3000000; i++) { // 预处理部分
// f[i] = min(f[i / a] + x, (f[i / 1] + f[i / 2] + f[i / 3] + f[i / 4] + f[i / 5] + f[i / 6]) / 6 + y);
small[i] = min(small[i / a] + x, (small[i / 2] + small[i / 3] + small[i / 4] + small[i / 5] + small[i / 6]) / 5 + 6.0 / 5.0 * y);
}
printf("%.15f", dfs(n)); // 暴力搜
}
F
赛后补的。
假如是偶数层括号就正着处理,奇数层反着处理。那我们怎么快速做切换呢?
从头开始遍历,如果遇到括号,就跳到与之配对的括号并翻转方向(切换处理方向)即可。
F
// Problem: F - Transpose
// Contest: AtCoder - AtCoder Beginner Contest 350
// URL: https://atcoder.jp/contests/abc350/tasks/abc350_f
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
stack<int> lbs;
int to[500005];
int main() {
string s;
cin >> s;
for (int i = 0; i < s.size(); i++) {
if (s[i] == '(') {
lbs.push(i);
} else if (s[i] == ')') {
to[lbs.top()] = i;
to[i] = lbs.top();
lbs.pop();
}
}
int step = 1; // 方向
string ans = "";
for (int i = 0; i < s.size(); i += step) {
if (s[i] == '(' || s[i] == ')') {
step ^= -2; // step = -step
i = to[i];
} else {
ans.push_back(s[i] ^ (step == 1 ? 0 : 32)); // 'a' ^ 'A' = 32
}
}
cout << ans;
}
G
<++>
$ \color{white}{} $
$ \color{white}{} $
$ \color{white}{} $
$ \color{white}{} $
$ \color{white}{} $
$ \color{white}{} $
$ \color{white}{} $
$ \color{white}{} $
$ \color{white}{} $
$ \color{white}{} $
$ \color{white}{} $
$ \color{white}{} $
想必你是看了粗体字的人吧^_^
有三种思路,提供其中两种的思路,其中一种的代码。
sol1
根号分治。
众所不周知,根号分治大致就是把两种暴力拼起来。
暴力1:
考虑用 unordered_set 存图。
当查询 u,v 的时候,直接看 u 的邻居里有没有跟 v 相邻的。
时间复杂度 O(nq),空间复杂度 O(n)。
暴力2:
将所有的答案存在一个二维数组里。
当加边的时候,就从两个点分别向邻居更新答案。
时间复杂度也是 O(nq),空间复杂度 O(n^2)。
拼起来:
设邻居数 >= sqrt(N) 的为大点,其它的为小点。
将 <= sqrt(N) 个大点的答案放在二维数组里,空间复杂度 O(n)。
对于小点用 unordered_set 处理。接着考虑加边时。
如果一个点被提拔为大点了,那么把它加进大点群里。
在更新大点对大点时,用另一个点去更新大点到大点的答案。
由于有大点群所以时间复杂度(一次)是 O(sqrt n)。
查询的时候,如果有小点,那么用小点去暴力搜,时间复杂度是 O(sqrt n)。
否则直接查询二维数组。
总体时间复杂度为 $ O(n sqrt n) $。
G
// Problem: G - Mediator
// Contest: AtCoder - AtCoder Beginner Contest 350
// URL: https://atcoder.jp/contests/abc350/tasks/abc350_g
// Memory Limit: 256 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 998244353
int bigans[505][505], big[505], bigcnt;
int isbig[100005];
unordered_set<int> graph[100005];
int main() {
int n, q;
scanf("%d %d", &n, &q);
int S = sqrt(n);
int lastans = 0;
while (q--) {
ll a, b, c;
scanf("%lld %lld %lld", &a, &b, &c);
a = 1 + ((a * (1 + lastans) % mod) % 2);
b = 1 + ((b * (1 + lastans) % mod) % n);
c = 1 + ((c * (1 + lastans) % mod) % n);
// cerr << a << " " << b << " " << c << endl;
if (a == 1) {
graph[b].insert(c);
graph[c].insert(b);
if (!isbig[b] && graph[b].size() >= S) {
big[isbig[b] = ++bigcnt] = b;
for (int i = 1; i <= bigcnt - 1; i++) {
for (int d : graph[b]) {
if (graph[d].count(big[i])) {
bigans[i][isbig[b]] = d;
bigans[isbig[b]][i] = d;
break;
}
}
}
}
if (!isbig[c] && graph[c].size() >= S) {
big[isbig[c] = ++bigcnt] = c;
for (int i = 1; i <= bigcnt - 1; i++) {
for (int d : graph[c]) {
if (graph[d].count(big[i])) {
bigans[i][isbig[c]] = d;
bigans[isbig[c]][i] = d;
break;
}
}
}
}
// if (bigcnt >= 500) {
// puts("WArning");
// return 0;
// }
if (isbig[b]) {
for (int d : graph[c]) {
if (isbig[d]) {
bigans[isbig[b]][isbig[d]] = c;
bigans[isbig[d]][isbig[b]] = c;
}
}
}
if (isbig[c]) {
for (int d : graph[b]) {
if (isbig[d]) {
bigans[isbig[c]][isbig[d]] = b;
bigans[isbig[d]][isbig[c]] = b;
}
}
}
} else {
if (isbig[b] && isbig[c]) {
printf("%d\n", lastans = bigans[isbig[b]][isbig[c]]);
// cerr << lastans << endl;
continue;
}
if (graph[b].size() > graph[c].size()) {
swap(b, c);
}
bool flag = 0;
for (int d : graph[b]) {
if (graph[d].count(c)) {
printf("%d\n", lastans = d);
flag = 1;
break;
}
}
if (!flag) {
printf("%d\n", lastans = 0);
}
// cerr << lastans << endl;
}
}
}
sol2
考虑并查集……里面的 fa。
查询 $ u, v $ 时,有三种可能答案不为 $ 0 $:
-
$ u = fa[fa[v]] $。
-
$ fa[u] = fa[v] $。
-
$ fa[fa[u]] = v $。
但是当连边的时候,并查集的整个结构可能要重构。(因此有了个离线的办法:提前先连一遍所有的边,固定结构,然后开搞,但这题强制在线)
放乐观点,重构就重构呗!启发式合并,重新计算 fa,照样能过。
点击查看代码
不是我不是都说了只放一种思路的代码吗你怎么点进来了