HDU 5047 Sawtooth 高精度
题意:
给出一个\(n(0 \leq n \leq 10^{12})\),问\(n\)个\(M\)形的折线最多可以把平面分成几部分。
分析:
很容易猜出来这种公式一定的关于\(n\)的一个二次多项式。
不妨设\(f(n)=an^2+bn+c\)。
结合样例我们可以列出\(3\)个方程:
\(f(0)=1,f(1)=2,f(2)=19\)
解出三个系数\(a,b,c\),然后用高精度做即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL MOD = 1000000000;
struct Big
{
LL a[5];
Big() { memset(a, 0, sizeof(a)); }
Big(LL x) { memset(a, 0, sizeof(a)); a[1] = x / MOD; a[0] = x % MOD; }
void read() {
memset(a, 0, sizeof(a));
LL x; scanf("%lld", &x);
a[0] = x % MOD; a[1] = x / MOD;
}
Big operator + (const Big& t) const {
Big ans;
for(int i = 0; i < 5; i++) ans.a[i] = a[i];
for(int i = 0; i < 5; i++) {
ans.a[i] += t.a[i];
int j = i;
while(ans.a[j] >= MOD) {
ans.a[j + 1] += ans.a[j] / MOD;
ans.a[j++] %= MOD;
}
}
return ans;
}
Big operator * (const Big& t) const {
Big ans;
for(int i = 0; i < 5; i++) {
for(int j = 0; j < 5; j++) if(i + j < 5) {
ans.a[i + j] += a[j] * t.a[i];
int k = i + j;
while(ans.a[k] >= MOD) {
ans.a[k + 1] += ans.a[k] / MOD;
ans.a[k++] %= MOD;
}
}
}
return ans;
}
Big operator - (const Big& t) const {
Big ans;
for(int i = 0; i < 5; i++) ans.a[i] = a[i];
for(int i = 0; i < 5; i++) {
int j = i + 1;
if(ans.a[i] < t.a[i]) {
while(!ans.a[j]) j++;
ans.a[j]--;
for(int k = j - 1; k > i; k--) ans.a[k] += MOD - 1;
ans.a[i] += MOD;
}
ans.a[i] -= t.a[i];
}
return ans;
}
void output() {
int i = 0;
for(i = 4; i; i--) if(a[i]) break;
printf("%lld", a[i]);
for(int j = i - 1; j >= 0; j--) printf("%09lld", a[j]);
printf("\n");
}
};
int main()
{
int T; scanf("%d", &T);
for(int kase = 1; kase <= T; kase++) {
printf("Case #%d: ", kase);
Big x; x.read();
Big ans(1);
ans = ans + (Big(8) * x * x);
ans = ans - (Big(7) * x);
ans.output();
}
return 0;
}