UVa 10655 Contemplation! Algebra 矩阵快速幂
题意:
给出\(p=a+b\)和\(q=ab\),求\(a^n+b^n\)。
分析:
这种题目关键还是在于构造矩阵:
$\begin{bmatrix}
0 & 1 \
-(a+b) & ab
\end{bmatrix}
\begin{bmatrix}
a{n-1}+b\
an+bn
\end
\begin{bmatrix}
an+bn\
a{n+1}+b
\end{bmatrix}$
注意不要遇到\(p,q\)都为\(0\)时就退出,因为测试数据中是有这种情况的。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
struct Matrix
{
LL a[2][2];
Matrix() { memset(a, 0, sizeof(a)); }
Matrix operator * (const Matrix& t) const {
Matrix ans;
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
for(int k = 0; k < 2; k++)
ans.a[i][j] += a[i][k] * t.a[k][j];
return ans;
}
};
Matrix Pow(Matrix a, LL p) {
Matrix ans;
ans.a[0][0] = ans.a[1][1] = 1;
while(p) {
if(p & 1) ans = ans * a;
a = a * a;
p >>= 1;
}
return ans;
}
LL p, q, n;
int main()
{
while(scanf("%lld%lld", &p, &q) == 2) {
if(p == 0 && q == 0) break;
scanf("%lld", &n);
if(n == 0) { printf("2\n"); continue; }
Matrix M;
M.a[0][1] = 1;
M.a[1][0] = -q;
M.a[1][1] = p;
M = Pow(M, n - 1);
LL ans = M.a[1][0] * 2 + M.a[1][1] * p;
printf("%lld\n", ans);
}
return 0;
}