HDU 5015 233 Matrix 矩阵快速幂
题意:
给出一个矩阵\(M\)的第\(0\)行和第\(0\)列,以及递推关系\(M_{i,j}=M_{i-1,j}+M_{i,j-1}\)。
求\(M_{n,m} \, mod \, 10000007\),其中\(n \leq 10, m < 2^{31}\)
分析:
注意到\(n\)比较小,而\(m\)比较大,我们可以构造矩阵,从第\(k\)列元素递推到第\(k+1\)列元素。
具体构造方法如下:
以\(n=4\)为例:
\(\begin{bmatrix}
10 & 0 & 0 & 0 & 0 & 1\\
10 & 1 & 0 & 0 & 0 & 1\\
10 & 1 & 1 & 0 & 0 & 1\\
10 & 1 & 1 & 1 & 0 & 1\\
10 & 1 & 1 & 1 & 1 & 1\\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
M_{0,k-1}\\
M_{1,k-1}\\
M_{2,k-1}\\
M_{3,k-1}\\
M_{4,k-1}\\
3
\end{bmatrix}
=\begin{bmatrix}
M_{0,k}\\
M_{1,k}\\
M_{2,k}\\
M_{3,k}\\
M_{4,k}\\
3
\end{bmatrix}\)
所以我们计算这个矩阵的快速幂就可得到答案。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn = 15;
const LL MOD = 10000007;
LL mul_mod(LL a, LL b) { return a * b % MOD; }
LL add_mod(LL& a, LL b) { a += b; if(a >= MOD) a -= MOD; }
int n, m, sz;
int a[maxn], b[maxn];
struct Matrix
{
LL a[15][15];
Matrix() { memset(a, 0, sizeof(a)); }
Matrix operator * (const Matrix& t) const {
Matrix ans;
for(int i = 0; i < sz; i++)
for(int j = 0; j < sz; j++)
for(int k = 0; k < sz; k++)
add_mod(ans.a[i][j], mul_mod(a[i][k], t.a[k][j]));
return ans;
}
};
Matrix pow_mod(Matrix a, int n) {
Matrix ans;
for(int i = 0; i < sz; i++) ans.a[i][i] = 1;
while(n) {
if(n & 1) ans = ans * a;
a = a * a;
n >>= 1;
}
return ans;
}
int main()
{
while(scanf("%d%d", &n, &m) == 2) {
for(int i = 1; i <= n; i++) {
scanf("%d", a + i);
a[i] %= MOD;
}
if(m == 0) { printf("%d\n", a[n]); continue; }
sz = n + 2;
b[0] = 233;
for(int i = 1; i <= n; i++) b[i] = (b[i-1] + a[i]) % MOD;
b[n + 1] = 3;
Matrix M;
for(int i = 0; i < sz - 1; i++) M.a[i][0] = 10;
for(int i = 0; i < sz; i++) M.a[i][sz-1] = 1;
for(int i = 1; i < sz - 1; i++)
for(int j = 1; j <= i; j++) M.a[i][j] = 1;
M = pow_mod(M, m - 1);
LL ans = 0;
for(int i = 0; i < sz; i++)
add_mod(ans, mul_mod(M.a[sz-2][i], b[i]));
printf("%lld\n", ans);
}
return 0;
}