HDU 4812 D Tree 树分治

题意:

给出一棵树,每个节点上有个权值。要找到一对字典序最小的点对\((u, v)(u < v)\),使得路径\(u \to v\)上所有节点权值的乘积模\(10^6 + 3\)的值为\(k\)

分析:

比较经典的树分治。
对于分治过程中的一棵子树,我们统计两种情况:

  • 一端为重心的路径中,到某个顶点乘积为\(k\)的路径。
  • 两端在不同子树且过重心的路径中,乘积为\(k\)

其他的递归到子树中去。

这里要预处理乘法逆元。

子树合并的时候,需要用到一个小技巧性的hash,参考九野的博客

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#define MP make_pair
using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
const int MOD = 1000000 + 3;
const int maxn = 100000 + 10;
const int INF = 0x3f3f3f3f;

void read(int& x) {
	x = 0;
	char c = ' ';
	while(c < '0' || c > '9') c = getchar();
	while('0' <= c && c <= '9') {
		x = x * 10 + c - '0';
		c = getchar();
	}
}

LL pow_mod(LL a, LL n) {
	LL ans = 1;
	while(n) {
		if(n & 1) ans = ans * a % MOD;
		a = a * a % MOD;
		n >>= 1;
	}
	return ans;
}

int mul_mod(int a, int b) { return (LL)a * b % MOD; }

int inverse(int x) { return pow_mod(x, MOD - 2); }

int n, k;
int a[maxn], inv[MOD];

struct Edge
{
	int v, nxt;
	Edge() {}
	Edge(int v, int nxt): v(v), nxt(nxt) {}
};

int ecnt, head[maxn];
Edge edges[maxn * 2];

void AddEdge(int u, int v) {
	edges[ecnt] = Edge(v, head[u]);
	head[u] = ecnt++;
}

PII ans;

bool del[maxn];
int fa[maxn], sz[maxn];

void dfs(int u) {
	sz[u] = 1;
	for(int i = head[u]; ~i; i = edges[i].nxt) {
		int v = edges[i].v;
		if(del[v] || v == fa[u]) continue;
		fa[v] = u;
		dfs(v);
		sz[u] += sz[v];
	}
}

PII findCenter(int u, int t) {
	PII ans(INF, u);
	int m = 0;
	for(int i = head[u]; ~i; i = edges[i].nxt) {
		int v = edges[i].v;
		if(del[v] || v == fa[u]) continue;
		ans = min(ans, findCenter(v, t));
		m = max(m, sz[v]);
	}
	m = max(m, t - sz[u]);
	ans = min(ans, MP(m, u));
	return ans;
}

int tot, path[maxn], num[maxn];
int has[MOD], id[MOD], cnt;

void getproduct(int u, int p, LL prod) {
	path[++tot] = prod; num[tot] = u;
	for(int i = head[u]; ~i; i = edges[i].nxt) {
		int v = edges[i].v;
		if(del[v] || v == p) continue;
		getproduct(v, u, mul_mod(prod, a[v]));
	}
}

PII getpair(int a, int b) {
	if(a < b) return MP(a, b);
	else return MP(b, a);
}

void solve(int u) {
	fa[u] = 0;
	dfs(u);
	int s = findCenter(u, sz[u]).second;
	del[s] = true;

	for(int i = head[s]; ~i; i = edges[i].nxt) {
		int v = edges[i].v;
		if(del[v]) continue;
		solve(v);
	}

	cnt++;
	for(int i = head[s]; ~i; i = edges[i].nxt) {
		int v = edges[i].v;
		if(del[v]) continue;
		tot = 0;
		getproduct(v, s, a[v]);
		int m = mul_mod(k, inv[a[s]]);
		for(int i = 1; i <= tot; i++) {
			if(path[i] == m) {
				PII tmp = getpair(num[i], s);
				if(!ans.first || tmp < ans) ans = tmp;
			}
			int m2 = mul_mod(k, mul_mod(inv[path[i]], inv[a[s]]));
			if(has[m2] == cnt) {
				PII tmp = getpair(num[i], id[m2]);
				if(!ans.first || tmp < ans) ans = tmp;
			}
		}
		for(int i = 1; i <= tot; i++) {
			if(has[path[i]] != cnt || (has[path[i]] == cnt && id[path[i]] > num[i])) {
				has[path[i]] = cnt;
				id[path[i]] = num[i];
			}
		}
	}

	del[s] = false;
}

int main()
{
	for(int i = 1; i < MOD; i++) inv[i] = inverse(i);

	while(scanf("%d%d", &n, &k) == 2) {
		for(int i = 1; i <= n; i++) read(a[i]);
		ecnt = 0;
		memset(head, -1, sizeof(head));
		for(int i = 1; i < n; i++) {
			int u, v; read(u); read(v);
			AddEdge(u, v);
			AddEdge(v, u);
		}

		ans = MP(0, 0);
		memset(has, 0, sizeof(has));
		cnt = 0;
		solve(1);
		if(!ans.first) puts("No solution");
		else printf("%d %d\n", ans.first, ans.second);
	}

	return 0;
}
posted @ 2016-02-22 10:18  AOQNRMGYXLMV  阅读(225)  评论(0编辑  收藏  举报